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The following materials are provided in this supplementary file:
* The optimal parameter settings for SAGM on each dataset.
e Full results of Table 1 in the main text.

* Robustness on ImageNet.

A. The optimal parameter settings for SAGM on each dataset

For a fair comparison, we follow the hyperparameter (HP) search protocol proposed by Cha et al. [0]. As mentioned in
the main text, the learning rate, dropout rate, and weight decay are tuned in [1e-5, 3e-5, 5e-5], [0.0, 0.1, 0.5], and [1e-4, 1e-6]
respectively. The hyperparameter o in SAGM is tuned in [le-3, Se-4]. To guarantee reproducibility, the optimal parameter
settings for SAGM on each dataset are provided in Table Al. All experiments are conducted on a single NVIDIA A100 with
Python 3.8.13, PyTorch 1.12.1, Torchvision 0.13.1 and CUDA 11.3.

Table Al. The optimal parameter settings for SAGM on each dataset.

Dataset learning rate  dropout rate  weight decay  hyperparameter «
PACS 3e-5 0.5 le-4 le-3
VLCS le-5 0.5 le-4 le-3
OfficeHome le-5 0.5 le-4 Se-4
Terralncognita  le-5 0.5 le-4 le-3
DomainNet 3e-5 0.5 le-6 Se-4

B. Full results of Table 1 in the main text

In this section, we give the detailed results of Table 1 in the main text. Specifically, we provide the results of our SAGM and
the state-of-the-art DG methods [1, 3,4, 6-8, 10-16, 18-26] on PACS, VLCS, OfficeHome, Terralncognita, and DomainNet
datasets in Table A2, Table A3, Table A4, Table A5 and Table A6, respectively. The results marked by ft, I are copied from
Gulrajani and Lopez-Paz [9] and Cha et al. [5], respectively. Standard errors are reported from three trials, if available.

C. Robustness on ImageNet.

We use ResNet-50 as backbone and follow the standard training recipes. We use SGD optimizer with momentum of
0.9, weight decay 0.0001, base learning rate of 0.1 with linear scaling rule, batch size of 256, and total epochs of 90. The
hyperparameter « is set to 0.001. The hyperparameter p is set to 0.05, following SAM [7].
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Table A2. Out-of-domain accuracies (%) on PACS .

Algorithm A C P S Avg
CDANNT [15] 84.6+1.8 75.5+0.9 96.8+0.3 73.5+0.6 | 82.6
IRMT [1] 84.8+1.3 76.4+1.1 96.7+0.6 76.1+1.0 | 83.5
MetaReg [2] 87.2 79.2 97.6 70.3 83.6
DANNT [8] 86.4+0s 77.4+08 97304 73.5+23 | 83.7
GroupDROT [18] 83.5+09 79.1+0.6 96.7+0.3 78.3+2.0 | 84.4
MTL' [3] 87.5+08 77.1+05 96.4+0s8 77.3+18 | 84.6
MMD' [14] 86.1+1.4 79.4+09 96.6+0.2 76.5+0.5 | 84.7
VREx' [12] 86.0+1.6 79.1+0.6 96.9+t05 77.7+1.7 | 84.9
MLDGH [13] 85.5+1.4 80.1+1.7 97.4+03 76.6+1.1 | 84.9
ARMT [24] 86.8+0.6 76.8+05 97.4+03 79.3+1.2 | 85.1
RSCT [10] 854+08 79.7+1.8 97.6+0.3 78.2+1.2 | 85.2
MixstyleiE [25] 86.8+05 79.0+1.4 96.6+0.1 78.5+2.3 | 85.2
ERMT [22] 84.7+0.4 80.8+0.6 97.2+0.3 79.3+1.0 | 85.5
CORALT [21] 88.3+0.2 80.0+0.5 97.5+0.3 78.8+1.3 | 86.2
SagNetT [16] 87.4+10 80.7+0.6 97.1+0.1 80.0+0.4 | 86.3
Miro [6] (with CLIP [17]) 87.4 78.2 97.2 78.7 85.4
SAM [7] 85.6+2.1 809+1.2 97.0t0.4 79.6+1.6 | 85.8
GSAM [26] 86.9+0.1 80.4+0.2 97.5+0.0 78.7+0.8 | 85.9
SAGM (ours) 87.4+02 80.2+0.3 98.0+0.2 80.8+0.6 | 86.6
Table A3. Out-of-domain accuracies (%) on VLCS .
Algorithm C L S v Avg
GroupDROJr [18] 97.340.3 63.4+0.9 69.5+08 76.7+0.7 | 76.7
RSCT [10] 97.9+0.1 62.5+0.7 723+1.2 75.6+08 | 77.1
MLDG' [13] 97.4+02 652+07 71.0x1.4 753+x1.0 | 77.2
MTL' [3] 97.8+0.4 64.3+03 71.5+07 75.3+17 | 77.2
ERM* [22] 98.0+0.3 64.7+12 Tl4x12 752416 | 77.3
MMD' [14] 97.7+0.1  64.0+1.1  72.840.2 753433 | 77.5
CDANNT [15] 97.1+0.3 65.1+1.2 70.7+08 77.1+15 | 77.5
ARMT [24] 98.7+0.2 63.6+07 71.3x12 76.7+0.6 | 77.6
SagNet' [16] 97.9+0.4 64.5+05 71.4+13 77.5+05 | 77.8
Mixstyle? [25] 08.6+0.3 64.5+1.1 72.6+05 75.7+1.7 | 77.9
VREx' [12] 98.4+03 64.4+1.4 T4.1+04 7T762+1.3 | 78.3
IRMT [1] 98.6+0.1 64.9+0.9 73.4+06 77.3+0.9 | 78.6
DANNT [8] 99.0£0.3 65.1x1.4 73.1x0.3 77.2+0.6 | 78.6
CORAL' [21] 98.3+0.1 66.1+1.2 734403 T77.5+12 | 78.8
Miro [6] (with CLIP [17]) 98.3 64.7 75.3 77.8 79.0
SAM [7] 99.1+0.2 65.0x1.0 73.7t10 79.8+0.1 | 79.4
GSAM [26] 98.7+0.3 64.9+0.2 74.3+00 78.5+0.8 | 79.1
SAGM (ours) 99.0+0.2 65.2+0.4 75.1+0.3 80.7x0.8 | 80.0




Table A4. Out-of-domain accuracies (%) on Of ficeHome .

Algorithm A C P R Avg
Mixstyle* [25] 51.1+0.3 53.2+04 68.2+0.7 69.2+0.6 | 60.4
IRMT [1] 58.942.3 522+1.6 72.1+29 T4.0+25 | 64.3
ARMT [24] 58.9+0.8 51.0+0.5 74.1+0.1 752403 | 64.8
RSCT [10] 60.7+1.4 51.4+03 74.8+1.1 75.1+1.3 | 65.5
CDANNT [15] 61.5+1.4 504424 7T44+09 7T6.6x08 | 65.7
DANNT [8] 59.9+1.3 53.0x0.3 73.6+0.7 769+05 | 65.9
GroupDROJr [18] 60.4+0.7 52.7+1.0 75.0+0.7 76.0+0.7 | 66.0
MMDT [14] 60.4+0.2 53.3+0.3 743101 77.4+06 | 66.4
MTL [3] 61.5+0.7 524+06 7T49+04 76.8+04 | 66.4
VREx' [12] 60.7+0.9 53.040.9 75.3+0.1 76.6+05 | 66.4
ERM' [22] 61.3+0.7 52.4+03 75.8+01 76.6+0.3 | 66.5
MLDGT [13] 61.5+0.9 53.2+0.6 75.0+1.2 77.5+04 | 66.8
ERM? [22] 63.1+0.3 519+04 77.2+05 78.1+0.2 | 67.6
SagNetJr [16] 63.4+02 54.8+0.4 75.8+0.4 78.3+0.3 | 68.1
CORALT [21] 65.3+04 54.4+05 76.5+01 7T8.4+05 | 68.7
Miro [6] (with CLIP [17]) 67.5 54.6 78.0 81.6 70.5
SAM [7] 64.5+0.3 56.5+0.2 77.4+01 79.8+0.4 | 69.6
GSAM [26] 64.9+0.1 55.2+02 77.840.0 79.2+0.2 | 69.3
SAGM (ours) 65.44+0.4 57.0+0.3 78.0+0.3 80.0+0.2 | 70.1
Table AS. Out-of-domain accuracies (%) on TerraIncognita .
Algorithm L100 L38 L43 L46 Avg
MMDT [14] 41.943.0 34.8+1.0 57.0+19 352+18 | 42.2
GroupDROJr [18] 41.2+0.7 38.6+2.1 56.7+09 36.4+2.1 | 43.2
Mixstylet [25] 543+1.1 34.1+1.1 559+1.1 31.7+2.1 | 44.0
ARMT [24] 493+0.7 38.3+t2.4 55.8+08 38.7+1.3 | 45.5
MTLT [3] 49.3+1.2 39.6+6.3 55.6+1.1 37.8408 | 45.6
CDANNT [15] 47.0+1.9 41.3+48 549+1.7 39.8+23 | 45.8
ERMT [22] 49.8+4.4 42.1+1.4 569+18 35.7+39 | 46.1
VREx' [12] 48.2+4.3 41.7+1.3 56.8408 38.7+3.1 | 46.4
RSCT [10] 50.2+2.2 392+1.4 56.3+1.4 40.8+06 | 46.6
DANNT [§] 511435 40.6+06 57.4+05 37.7+18 | 46.7
IRM' [1] 54.6+1.3 39.8+1.9 56.2+1.8 39.6+0.8 | 47.6
CORALT [21] 51.6+2.4 422+1.0 57.0+1.0 39.8+209 | 47.7
MLDG [13] 542+3.0 443+1.1 55.6+03 369422 | 47.8
SagNetT [16] 53.0+2.9 43.0+255 57.9+t06 40.4+1.3 | 48.6
ERM? [22] 54.3+04 42.5+0.7 55.6+0.3 38.8+425 | 47.8
Miro [6] (with CLIP [17]) 61.1 43.9 56.9 39.6 50.4
SAM [7] 46.3+1.0 38.4+24 54.0+1.0 34.5+08 | 43.3
GSAM [26] 50.840.1 39.3+0.2 59.6+t0.0 38.2+0.8 | 47.0
SAGM (ours) 54.8+1.3 41.4+0.8 57.7+06 413404 | 48.8




Table A6. Out-of-domain accuracies (%) on DomainNet .

Algorithm clip info paint quick real sketch Avg
MMD' [14] 32.1+13.3  11.0+4.6 26.84+11.3 8.7+2.1 32.7+13.8 28.9+11.9 | 234
GroupDROT [18] 47.2+0.5 17.5+0.4 33.840.5 9.3+0.3 51.64+0.4 40.1+0.6 333
VREx' [12] 47.34+3.5 16.0+1.5 35.8+4.6 10.940.3 49.6+4.9 42.04+3.0 33.6
IRM' [1] 48.5+2.8 15.0£1.5 38.3+4.3 10.9+0.5 48.2+5.2 42.3+3.1 33.9
Mixstylei [25] 51.9+0.4 13.3+0.2 37.0+0.5 12.3+0.1  46.1+0.3 43.4+0.4 34.0
ARM' [24] 49.7+0.3 16.3+0.5 40.9+1.1 9.4+0.1 53.440.4 43.540.4 35.5
CDANN' [15] 54.640.4 17.3+0.1  43.740.9 12.1+0.7  56.240.4 45.940.5 38.3
DANNT [8] 53.1+0.2 18.3+0.1  44.240.7 11.840.1  55.540.4 46.840.6 38.3
RSCT [10] 55.0£1.2 18.3+0.5 44.4+40.6 12.2+0.2 55.7+0.7 47.840.9 38.9
SagNetT [16] 57.7+0.3 19.0+0.2 45.3+0.3 12.7+0.5 58.1+0.5 48.8+0.2 40.3
MTL' [3] 57.9+0.5 18.5+0.4 46.0+0.1 12.5+0.1  59.540.3 49.2+40.1 40.6
ERM' [22] 58.1+0.3 18.840.3 46.740.3 12.240.4  59.640.1 49.8+0.4 40.9
MLDGT [13] 59.1+0.2 19.1+0.3 45.840.7 13.4+0.3 59.6+0.2 50.2+0.4 41.2
CORAL' [21] 59.2+0.1 19.7+0.2 46.6+0.3 13.4+0.4 59.840.2 50.1+0.6 41.5
MetaReg [2] 59.8 25.6 50.2 11.5 64.6 50.1 43.6
ERM* [22] 62.840.4 20.240.3  50.3+0.3 13.740.5  63.740.2 52.140.5 43.8
Miro [6] (with CLIP [17]) 63.4 21.5 50.4 12.2 65.4 52.5 44.3
SAM [7] 64.540.3 20.74£0.2  50.240.1 15.1+0.3  62.640.2 52.7+0.3 44.3
GSAM [26] 64.2+0.3 20.8+£0.2  50.9+0.0 14.4+0.8 63.5+0.2 53.9+0.2 44.6
SAGM (ours) 64.940.2 21.14£0.3  51.540.2 14.84+0.2 64.1+0.2 53.64+0.2 45.0

Table A7. Top-1 Accuracy on ImageNet-1k and ImageNet-R and training speeds (256 images in 1 A100).

Methods | Backbone = Epoch ImageNet-l1k ImageNet-R Speeds

SAM RestNet-50 90 76.9 23.8 524.65ms
GSAM | RestNet-50 90 77.2 23.6 545.37ms
SAGM RestNet-50 90 77.4 239 524.65ms

As shown in Table A7, SAGM performs better than SAM and GSAM on ImageNet-1k and ImageNet-R. In addition, it
has the same training speed as SAM and is slightly faster than GSAM.
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