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A. Formulation Details

We expand the diffuse and specular contribution deriva-
tions below:

Diffuse contribution. The diffuse contribution Ld
o is given

by the diffuse terms of Equation 5 in the main paper:
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where a(x) is the albedo at point x, ksun is the (optimized)
sun intensity, and psun is the (optimized) sun direction. The
sun is modeled as a directional light source, so the second
summation can be simplified to a single term (i.e. only in
the direction of psun). E ∈ R16×32×3 is the high-dynamic-
range (HDR) environment map. We ignore the visibility
term for the ambient lighting during optimization, as it is
computationally intensive to compute the visibility for all
light directions and the ambient intensity is much weaker
than that of the sun.

Specular contribution. The specular contribution Ls
o at

each pixel is given by the specular term of the sun, see Equa-
tion 5 in the main paper (recall that we ignore the specular

term of the ambient due to its weak contribution):
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where we have substituted Equation 2 in the main paper and
reduced the summation to just one term at psun (i.e. Lsun

i is
0 elsewhere).

B. Optimization Details
B.1. Coarse optimization

The pose loss, Lpose = Lmask + Llmk, is optimized using
an ADAM optimizer [5] with the following learning rates
for different parameters:

(β, θj , ψj) 1e−4
S (Object scale) 1e−2
Tj (Object translation) 1e−2

We optimize for a total of 2,000 epochs on a single NVIDIA
RTX 2080 Ti GPU. Each epoch consists of one optimization
step for all training images. The coarse optimization takes
2.5 hours to converge for a sequence that contains 200 im-
ages with resolution 224× 224.

To account for the fact that our geometry does not explic-
itly model hair and clothing, our mask loss Lmask consists of
a foreground mask loss Lmask foreground which corresponds
to skin regions and a background mask loss Lmask background
which corresponds to background pixels.

Lmask = Lmask foreground + Lmask background (6)

where the foreground mask loss is enforcing 1s in the skin
region and the background mask loss is enforcing 0s in the
background region. Both are L2 losses.

We compute the background mask using the matting
model from RVM [6], and the skin mask from a modified
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version1 of BiSeNet [12, 13]. The landmarks used for the
landmark loss are obtained from HRNet [9].

B.2. Photometric optimization

The final loss:

L =λmaskLmask + λlmkLlmk + λELE+

λEsLEs + λVGGLVGG + λphotoLphoto (7)

is optimized using ADAM for 4,000 epochs. The initial
learning rates are

(β, θj , ψj) 1e−4
∆X 1e−4
S 1e2
Tj 1e2
a 1e−2
s 1e−2
ks 1e−2
psun 1e−3
E 1e−3
ksun 1e−3

Every 1,000 epochs, we decay the learning rate of all pa-
rameters to 10% of their previous values. The optimization
runs on a single NVIDIA RTX 2080 Ti GPU and takes 2
days to converge for a sequence of 200 images of resolution
224 × 224. The VGG loss LV GG in the photometric opti-
mization follows the implementation of pix2pixHD [10].

C. Capture Details
Our video sequences are captured by an iPhone 12 Pro

Max or an iPhone 13 Pro Max. While we have validated that
our method works equally well with keypoint-based pose
estimation techniques, we opt for using the phone’s inte-
grated visual-inertial SLAM system, since we found empir-
ically that it produces more reliable camera orientations. In
practice, to capture our sequences, we use CamTrackAR2,
an app that captures synchronized camera intrinsics3, poses,
and video frames.

During capture, we impose constraints on the subject ex-
pression to account for the limitations of the face morphable
model we use for optimization, e.g. not modeling the teeth
(see more discussions in Section H). Prior to capture, our
subjects are instructed to try to maintain a constant expres-
sion, to face forward, and to rotate in place. Naturally,
it is nearly impossible to remain perfectly centered and to
keep a constant pose and expression, but fortunately, our

1https://github.com/zllrunning/face-parsing.PyTorch
2https://fxhome.com/product/camtrackar
3since the iPhone camera uses optical image stabilization, and therefore

the principal point and focal lengths vary as the camera moves

formulation is tolerant to variations in both. In fact, our re-
constructed geometry can typically model subtle expression
variations like smiles and twitches. Still, to reduce noise in
optimization, we filter out the input frames in which the
subject has an open mouth or is blinking, or frames which
contain significant glare (i.e., when the camera is facing the
sun).

While a single rotation provides sufficiently many con-
straints on the shape of the face (through shadows and spec-
ular reflections), the quality of the geometry and texture at
the boundaries of the face (i.e., at the edge of the jaw and
the side of the face) can be improved by capturing additional
frames where the camera is rotating independently from the
face. In these cases, we capture a full 360 degree rotation,
then stop, and continue rotating the camera along a 15 de-
gree arc back and forth. When using this capture technique,
we typically sample around 200 frames from the full video
for optimization – 100 from the initial 360 degree rotation,
and 100 from the arc sequence. Since all images from the
arc sequence provide similar photometric constraints (i.e.
they do not give strong constraints on material properties,
lighting, or normal, given that the lighting conditions are
identical), and in order to avoid degenerate optimization,
we only optimize for at most five arc images per epoch.

D. Evaluation Details

In this section, we describe how we compare SunStage
with ablated variants and baselines, for both the tasks of
relighting and view synthesis. Since different baseline ap-
proaches make different assumptions, we clarify the neces-
sary adaptations made for fair comparisons. We also pro-
vide analysis of the results.

D.1. Held-out frames

In addition to capturing a single 360-degree rotation, we
capture two testing sequences: one for evaluating view syn-
thesis, and one for evaluating relighting quality.

Immediately after completing the capture, the subject
hands the camera to another person, who captures a multi-
view video of the subject (i.e., translating and rotating the
camera to capture the face from different viewpoints). The
subject remains still during this process. Of these captured
frames, the first (which is typically the frame facing the sub-
ject head-on), is included in the “training” sequence (and
is used as the input for other methods that only operate on
single frames), and the remainder are held out as testing im-
ages for view synthesis. For the purposes of evaluation, we
assume the subject is entirely stationary for this portion of
the capture.

Additionally, we ask the subject to capture a second se-
quence, either in a different location, at a different time of
day, or at a different relative angle from the sun. We use



these examples to evaluate our method’s ability on relight-
ing. Both sequences are reconstructed separately, without
using a shared model for the subject’s geometry, reflectance,
or appearance. For evaluation, we swap the estimated light-
ing conditions between the two models, i.e., we render an
image using the estimated sun direction and environment
map (as well as a given frame’s pose and expression) from
sequence A and the subject geometry and materials from se-
quence B, and compare the result to the corresponding real
image from sequence A. These target poses, expressions,
and lighting conditions are shared by all ablations and base-
line experiments.

D.2. Metrics

To quantitatively compare these methods, we compute
relighting and view synthesis errors measured in Peak
Signal-to-Noise Ratio (PSNR), Similarity Index Measure
(SSIM) [11], and Learned Perceptual Image Patch Simi-
larity (LPIPS) [15]. As Table 1 in the main paper shows,
SunStage achieves the best performance in both relighting
and view synthesis across all three error metrics.

For the task of relighting, we composite all methods’
results onto the ground-truth frames using skin masks ex-
tracted using a modified version4 of BiSeNet [12,13], since
our method does not relight non-skin regions, e.g. hair
and clothes. The composited result is used for comparison
against the ground-truth images.

D.3. Baseline Comparisons

In the following paragraphs, we provide the details about
how we train and test the baseline models, as well as our
analysis of these baseline results.

DECA. As a very naı̈ve baseline, we use DECA [3], a
single-image face reconstruction method, for the tasks of
novel-view synthesis and relighting. From a single image,
DECA predicts facial geometry, spherical harmonic light-
ing, and albedo. For view-synthesis, we run DECA on two
images (separately) to get two sets of albedo, geometry, and
lighting. To render an image from a new viewpoint, we sim-
ply swap the shape code, expression code and albedo from
one image to the other. While this gives DECA a significant
advantage, since the lighting and pose are estimated directly
from the ground-truth frame, we find in practice that the
rendered results seldom resemble the ground-truth images.
Additionally, although DECA contains a deformation map
to model fine details, we find in practice that this seldom
accurately models subject-specific geometry details such as
wrinkles. One reason for the poor performance at this task
is the orthographic assumption. As shown in Figure 6 in the
main paper, DECA’s pose and shape estimates significantly
deteriorate upon introduction of strong perspective effects.

4https://github.com/zllrunning/face-parsing.PyTorch

For the task of relighting, we similarly run DECA on a
pair of images, and swap the lighting conditions between
the two. We find that since DECA assumes a Lambertian
model, the resulting images are far from photorealistic.

GCFR. GCFR [4] is a single-image relighting method that
aims to handle hard shadows in new lighting scenarios. It
predicts a shadow mask from an estimated depth map of
the face. We use the pretrained model from GCFR for the
baseline comparison.

Given the input and target image, we first use GCFR’s
Shadow Mask Estimation module to estimate the shading
map, then we estimate the albedo map from the input im-
age using GCFR’s hourglass network (albedo decoder). To
render the target relit image, we compose the target shading
map (advantageous to the baseline) with input albedo map
following Equation 6 in [4].

However, GCFR fails to accurately relight images even
with the target shading map. Its hourglass network is not
able to estimate a good albedo from the input image —
the estimated albedo often has shadows and specular high-
lights baked in. This is likely because the training dataset of
GCFR does not contain enough images with hard shadows.

DPR. DPR [17] is a single-image learning system that op-
erates entirely in the 2D image space. We use the pretrained
model from DPR as a baseline for the task of relighting.

For simplicity, we evaluate DPR only on same-
environment relighting. In other words, we ask DPR to
render the same environment as the input sequence, but un-
der different incident sun angles. To render a relit image,
we first run DPR to estimate the spherical harmonics co-
efficients of the input environment map, then rotate these
towards the lighting of the target image, and finally feed
those SH coefficients to perform relighting. DPR addition-
ally requires the input and output to be spatially aligned. To
facilitate this, we use the geometry estimated by SunStage
as a proxy for reprojecting an input frame into the pose of
the target frame.

We find that DPR is unable to accurately relight im-
ages, failing to synthesize accurate shadows and specular-
ity, largely as a result of the lack of explicit 3D reasoning of
the subject.

Total Relighting. Total Relighting [7] (TR) is a state-of-
the-art single-image method trained on high-quality light
state data, achieving impressive shading and specular high-
lights.

We use Total Relighting as a baseline for relighting. As
input, we provide the same reprojected images as we do for
DPR, and provide our target environment maps (the same
ones used for evaluating our method) as the target lighting
conditions.

Since TR does not model cast shadows explicitly, it of-



ten has difficulty removing cast shadows from input images,
and does not produce accurate cast shadows in the relit im-
ages. Additionally, Total Relighting produces color tones
that do not match the target images. We suspect this occurs
as a result of a number of factors: (1) there is an inher-
ent ambiguity in (particularly single-frame) decomposition
of lighting and albedo, and Total Relighting may simply
be decomposing the two differently when compared to our
method, and (2) the lighting maps provided for our quanti-
tative relighting tasks (i.e. those in the main paper, not the
HDRI renderings shown in the supplement) are the result of
our method’s decomposition, and therefore may not match
exactly the characteristics of the HDRI images used for
training TR. We use the pretrained Total Relighting model
(from the authors) to run inference on our images.

NLT. Like SunStage, NLT [16] is a “test-time optimization”
approach that learns a subject-specific appearance model
from multiple observations of the same subject.

We use NLT as a baseline for both relighting and view
synthesis. Since NLT expects that the incoming light di-
rections and viewing directions are known and a geome-
try proxy is provided, we train NLT on the input images,
along with the camera poses, sun directions, and face ge-
ometry estimated by SunStage. At test time, we query the
trained NLT with novel sun directions for relighting and
novel viewpoints for view synthesis.

We find that for both tasks, NLT produces less sharp
specular highlights and an overall less accurate rendering
than SunStage. NLT produces blurry results and ghosting
shadows, likely due to the discrepancy in the number of im-
ages used for training and the number of images typically
captured by a light stage (NLT has been shown to work on
300 × 50 = 15, 000 images, as opposed to ours that uses
only 200).

NextFace. Similar to SunStage, NextFace [2] is an
optimization-based face reconstruction method. It learns to
decompose the input image into shape, lighting, and mate-
rial properties from multiple observations of the same sub-
ject.

We evaluate NextFace on both relighting and view syn-
thesis. We first train NextFace on our training images to
estimate the shape, lighting, and material properties. For
the test set, we train another NextFace model to get the es-
timated lighting as the target for relighting, and shape pa-
rameters as the target for view synthesis. To render the final
image for relighting, we use the lighting at test time, and
shape and materials at training time. For view synthesis, we
use the shape at test time, and lighting and material at train-
ing time. We use the ray tracer in NextFace as the renderer.

We find that for both tasks, NextFace fails to model
self-cast shadows. This is due to the lighting formula-

tion it adopts. NextFace uses spherical harmonics (SH) to
model the scene lighting, which is unlikely to model high-
frequency lighting such as the hard sunlight.

D.4. Ablations

In this section, we examine different ablated versions of
our method.

Ours w/o coarse. In this ablation, we directly optimize
for all parameters without the coarse alignment stage. In
practice, we find that optimization seldom converges to a
reasonable solution due to the ill-posed nature of our opti-
mization problem: different combinations of geometry, re-
flectance, lighting, and camera poses may lead to the same
observed image.

As Figure 1a shows, the optimization result, without
coarse alignment, often gets trapped in local optima. Quan-
titatively, this ablated version of SunStage falls far behind
the full model.

Ours without spatially varying (SV) specular coeffi-
cients ks, s. This ablation study explores how spatially-
varying shininess (i.e., the ks and s parameters of our re-
flectance model) is critical for recovering a photorealistic
facial reflectance model. Since different face regions pos-
sess different shininess factors, using a global ks and s value
leads to an averaged solution, where no area is estimated to
be strongly shiny to avoid large re-rendering errors.

Another artifact we observe is that the eyeballs are esti-
mated to have overly wide specular lobes (similar to that of
the skin), as shown in Figure 1b. Quantitatively, this variant
performs worse than our full model but still achieves rea-
sonable errors (ranked the third best for relighting). This is
likely due to the fact that the specular component is numer-
ically insignificant.

Ours w/o Lmask, Llmk. This model variant ablates the con-
tribution of mask loss and landmark loss in the second (i.e.,
photometric) stage of our optimization. For this variant, we
preserve the first stage solution and disable the mask and
landmark losses for the second stage of optimization.

Similar to the “w/o coarse” ablation, this model variant
solves a less constrained optimization problem than our full
model does, e.g., without the facial keypoints, there is no
constrains on the mouth image pixels to align with the ge-
ometry corresponding to the mouth. We observe similar
qualitative (Figure 1c) and quantitative results (Table 1 in
the main paper ) as in the “w/o coarse” ablation.

Ours w/o Lmask. Similar to the previous ablation, we turn
off Lmask only in the second stage of our optimization. This
ablation suffers from alignment issues as seen before, and
therefore we skip its visualization in Figure 1. Quantita-
tively, as shown in Table 1 in the main paper , this ablation



w/o Coarse 
Alignment

(a) Ours w/o SV ks, s(b) Ours w/o Lmask or 
Llmk

(c) Ours

(d) Ours w/o opt.
(β, Θi, ϕi)

(e) Ours w/o Soft 
Shadow

(f) Ours w/o ΔX

Figure 1. Visualization of common artifacts produced by the ablated versions of SunStage.

outperforms “w/o Lmask, Llmk” by having more optimiza-
tion constraints from Llmk but still underperforms our full
model by a large margin.

Ours w/o opt. (β, θi, ϕi). In this experiment, we preserve
the initialized shape provided by DECA without refining it.
Since the images captured under our setup are selfies, the
perspective effects are not accounted for by DECA, which
assumes an orthographic camera model. As such, the shape
estimated by DECA is not well-aligned with our input im-
ages. As shown in Figure 1d and Table 1 in the main paper
, our shape optimization strategy improves the initialized
DECA shape.

Ours w/o soft shadow. In this variant, instead of doing
the soft comparison as Equation 8 in the main paper states,
we use a hard z-buffer comparison in producing the shadow
maps. Although Table 1 in the main paper shows that this
ablated version of our model achieves reasonable quantita-
tive performance, as Figure 1e demonstrates, using a hard
comparison produces spurious shadows, especially when
the sun is at grazing angles. Additionally, the optimized
shadows (and the sun position) are less accurate, which is
likely due to the instability in optimization as the gradients
are not continuous for the hard shadow comparison formu-
lation.

Ours w/o ∆X . We also explore the quality of our method
without optimizing for a displacement map. As Figure 1f il-
lustrates, this ablation is unable to model geometric details
such as wrinkles and pores. Consequently, such effects are

(a) Blinn-Phong (b) Microfacet [8] (c) Ground truth

Figure 2. Comparison on different reflectance models. A more
complex model [8] does not significantly improves visual quality.
On the other hand, it is hard to optimize and introduces instability
in training.

baked into the albedo, causing artifacts in applications such
as relighting and material editing. Additionally, this abla-
tion produces blurrier renderings, since the high-frequency
appearance change is harder to be explained by other factors
such as reflectance and lighting.

Ours w/ microfacet reflectance model. Finally, we change
the Blinn-Phong reflectance model to a more complex mi-
crofacet reflectance model [8]. As shown in Figure 2, mi-
crofacet model produces comparable specular highlights



Figure 3. Synthetic OLAT. By rendering the recovered face with a single distant light source (where geometry artifacts are exposed), we
can simulate the One-Light-at-A-Time (OLAT) data that was only possibly captured with a light stage.

with that from the Blinn-Phone model. The microfacet
model [8] describes the complicated light paths that de-
pend on incoming light direction, surface normal and ma-
terial properties. The gradients on these parameters, which
contribute to multiple terms in the equation, are more noisy
comparing to the simple Blinn-Phong reflectance model.
Using the same optimization scheme as in Blinn-Phong, we
find it impossible for the scene parameters converge to a
reasonably steady state. Therefore, we turn off the specular
highlights for the first 100 epochs to reduce the parame-
ter entanglement, and start optimizing all variables in the
microfacet model once the light (i.e., the sun) position is
converged. We observe little visual quality difference be-
tween using microfacet and Blinn-Phong reflectance mod-
els, while the former involves a much more unstable and
difficult optimization scheme. SunStage thus uses the sim-
ple Blinn-Phong reflectance model.

E. Additional Results

In Figure 5, Figure 6, Figure 7 and Figure 8, we show
more comparisons with Neural Video Portrait Relighting
(NVPR) [14] and Total Relighting (TR) [7]. Both NVPR
and TR are image based relighting methods which lever-
age the priors learned from light stage data. At test time,
the model takes in an arbitrary input image and a target
HDR environment map, and generates a relit result. We
find that neither of the baselines fully preserves the identity
of the subject, changing facial geometry or missing some
of the detailed reflectance properties (e.g. accurate specular
highlights) that are unique to each individual subject. Both
NVPR and TR also leave harsh traces on the relit results at
the locations where the shadow boundary exists in the input
image (see Figure 5 row 1 and row 3). This is likely a result
of the lack of such images (i.e., with harsh shadows) in the
training dataset.

Figure 4. Target lighting: Queen Mary (left) and Hollywood
(right) for the following comparisons with Neural Video Portrait
Relighting and Total Relighting. Both environment maps are tone
mapped for visualization.

F. Applications

OLAT. To further validate the quality of the reconstructed
geometry and the material properties, we simulate the One-
Light-at-A-Time (OLAT) lighting setup typically seen in
light stage captures [1]. Our results in Figure 3 show that we
can plausibly recreate this challenging lighting setup, which
typically exposes most errors in the estimated geometry and
reflectance.

Relighting: Soften shadows. To soften harsh shadows, we
increase the size of the light source by applying a random
offset j to the (optimized) sun position psun. This offset can
be interpreted as the radius of a virtual area light – j controls
the size of the light and thus the softness of the shadow. We
sample n new sun positions, and average these n renders to
produce the resulting rendering with softened shadows.

Relighting: Lighting replacement. We can use the learned
properties to realistically render the subject with a new input
environment map. The input environment map is downsam-
pled to 16 × 32. To render, each pixel in the environment
map is treated as a directional light source. The diffuse and
specular contribution is calculated following Equation 6 and
Equation 7 in the main paper.



(a) Input (b) NVPR [14] (c) TR [7] (d) Ours

Figure 5. Comparison with Neural Video Portrait Relighting and
Total Relighting on the target lighting “Hollywood”. Both NVPR
and TR leverage face priors by training on large-scale light stage
data. While being able to generalize to an arbitrary input, these
methods can not model the individual skin reflectance properties.
Both NVPR and TR also leave traces of visible shadow boundaries
from the input images.

Relighting: Different time of day. We show that we are
able to simulate relit faces from an arbitrary time of day,
including the fleeting “golden hour” and “blue hour” light-
ing that is favoured by many portrait photographers. To do
so, we look up the correlated color temperature (in Kelvin)
for different time of day, convert the color temperature into
color matrices in the sRGB space, and use these to change
the color of the sun in rendering.

View Synthesis. We can change the (optimized) camera
parameters to synthesize novel views of the subject. We can
also render the subject with different amounts of perspective
effects by changing the (optimized) camera focal length. In
practice, we linearly scale the focal length and the subject
distance to preserve the size of the face in the frame, as is
done in a dolly zoom.

G. Visualization Details

G.1. Compositing background

We use different compositing methods to combine the
rendered foreground subject and background for different
applications.

(a) Input (b) NVPR [14] (c) TR [7] (d) Ours

Figure 6. Comparison with Neural Video Portrait Relighting and
Total Relighting on the target lighting “Hollywood”. Both NVPR
and TR leverage face priors by training on large-scale light stage
data. While being able to generalize to an arbitrary input, these
methods can not model the individual skin reflectance properties.
Both NVPR and TR also leave traces of visible shadow boundaries
from the input images.

Black background. We use a black background (i.e. do
not do compositing) for the One-Light-At-a-Time render-
ing (Figure 3), to mimic the capture setup of a light stage.
We also use a black background for more dramatic lighting
setups that are similar to studio lighting, like the blue fill
light shown in Figure 1b in the main paper. We find that
significant changes in color to the original scene’s lighting
tend to look unrealistic when composited onto the original
background.

Original background. Whenever possible, we use the
original input image as the background in compositing.
Note that the original background contains a portion of the
hair that is not modeled physically, and thus does not re-
spect changes in lighting, viewpoint, or other parameters.
As such, the cases in which we can realistically composite
onto the original background are limited, and only include
shadow softening and subtle changes to lighting direction
and magnitude.

Panorama background. For the remainder of cases, when
we would like the subject to remain in the original scene, but
the lighting or viewpoint have changed significantly from



(a) Input (b) NVPR [14] (c) TR [7] (d) Ours

Figure 7. Comparison with Neural Video Portrait Relighting and
Total Relighting on the target lighting “Queen Mary”. Both NVPR
and TR leverage face priors by training on large-scale light stage
data. While being able to generalize to an arbitrary input, these
methods can not model the individual skin reflectance properties.
Both NVPR and TR also leave traces of visible shadow boundaries
from the input images.

the observed input frames, we instead composite the sub-
ject onto a panorama of the original scene. This panorama
is automatically stitched from the input video frames (mask-
ing out the subject in each frame, i.e., Ij · (1− Imask)). See
examples in Figure 9.

H. Discussions and Limitations

Physical model. Our method inherits the limitations of
existing morphable models that do not model hair, teeth,
clothes, or accessories. Figure 10 (a, b) shows a recon-
struction that does not model the hair, and Figure 10 (c, d)
shows an example where the reconstruction fails to model
the clothes.

Capture. Our capture setup is not always comprehensive
enough to model the full reflectance of the face. There are
regions of the face that may not observe changes in light-
ing during the entire capture, like the bottom of the chin,
which is often under shade. This causes ambiguity in our
reconstruction, since the observed color can be explained
by different combinations of albedo and lighting. Shown in
Figure 10 (e, f) and (g, h), this can result in highlights baked

(a) Input (b) NVPR [14] (c) TR [7] (d) Ours

Figure 8. Comparison with Neural Video Portrait Relighting and
Total Relighting on the target lighting “Queen Mary”. Both NVPR
and TR leverage face priors by training on large-scale light stage
data. While being able to generalize to an arbitrary input, these
methods can not model the individual skin reflectance properties.
Both NVPR and TR also leave traces of visible shadow boundaries
from the input images.

into the albedo.
Additionally, our optimization makes assumptions about

the scene lighting: 1) the sun must be the dominant light
source (i.e. the method does not work for a cloudy day cap-
ture), Figure 10 (i, j) shows an example where the video
captured under a cloudy day does not produce a reasonable
albedo, as the face is always observed under shade, without
any specular or shadow constraints. and 2) the sun’s color
temperature must be roughly in the range of 5500K-6500K
(i.e. daylight around noon). Otherwise our reconstruction
can not resolve the ambiguity between the illuminant and
albedo. Figure 10 (k, l) shows a video captured at golden
hour, a strongly tinted lighting, which induces ambiguity
in the recovered albedo. The result of the same identity
captured under the required lighting condition is shown in
Figure 10 (g, h), which has a much more reasonable albedo
reconstruction.



Figure 9. Example stitched panorama used for video background composite.

(a) Input (b) Reconstruction (c) Input (d) Reconstruction

(e) Input (f) Albedo (g) Input (h) Albedo

(i) Input (j) Albedo (k) Input (l) Albedo

Figure 10. Limitations. SunStage has limitations in its physical
model and capture setup. (a, b) and (c, d) show reconstructions
that fail to model hair and clothes. (e, f) and (g, h) illustrate the
reconstructed albedo entangled with highlights around the chin re-
gion, which does not see lighting variations at capture time. (i, j)
and (k, l) show failure cases when the capture lighting requirement
breaks. The former is captured under a cloudy day and the latter
is captured under a strongly tinted lighting condition. (k, l) shows
the same identity as in (g, h) captured under different lighting con-
ditions. The difference in the predicted albedo demonstrates the
albedo-illuminant ambiguity, and the need for the assumption of
mid-day (or otherwise known) sun color.
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