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A. Method
A.1. Algorithm

Algorithm 1: PAR
Input: Task sequence T1, . . . , TN ; Parameters α, β

1 Search cell and create a expert to learn task T1.
2 for t in [2, N ] do
3 Find the group g∗ with the smallest distance st,g∗ .
4 if st,g∗ < α then
5 Learn Tt by expert g∗ with regularization.
6 else if st,g∗ < β then
7 Reuse cell and create a expert to learn Tt.
8 else
9 Search cell and create a expert to learn Tt.

10 end

We summarize the process of the PAR in the Algo-
rithm 1.

A.2. Fine-grained Search

In our method, the number of experts and parameters
are proportional to the number of task groups, mitigating
the growth of parameter overhead. To further reduce the
overhead of each expert, we adopt NAS to search for com-
pact architectures for experts. Each expert in our method
is stacked with multiple cells and the search for architec-
ture is equivalent to the search for the appropriate cell.
Since the time overhead of NAS becomes unbearable as
the number of tasks increases, to improve the efficiency
of architectural search in lifelong learning, we propose a
relevance-aware sampling-based architecture search strat-
egy. Specifically, as shown in Figure 2 of the origin pa-
per, we construct a hierarchical search space. The coarse-
grained search space contains cells used by existing experts
and an unknown cell which will be searched from the fine-
grained search space. Following the common practice [4,8],
the fine-grained search space is a directed acyclic graph
(DAG) with 7 nodes (two input nodes i1, i2, an ordered se-
quence of intermediate nodes n1, n2, n3, n4, and an output
node). The input nodes are defined as the outputs in the

previous two layers and the output is concatenated from in-
termediate nodes. Each intermediate node is connected to
all of its predecessors by directed candidate edges, which
are associated with 6 candidate operations that are efficient
in terms of the number of parameters.

To search a cell for the new task, at first, we introduce a
hyper-parameter β. When st,g∗ ≤ β, we directly reuse the
cell of expert Eg∗ for the task Tt. A task distance greater
than α and less than β indicates that the new task is not
enough to share the expert with group Gg∗ , but can use the
same architecture. When st,g∗ > β, we assign the unknown
cell to the new expert and adopt an sampling-based NAS
method MDL [8] to determine it. Specifically, for each can-
didate edge, we denote the probability, sampling epochs,
and most recent performance of its candidate operations as
P , He, and Ha respectively, each of which is a real-valued
column vector of length 8. We update them through mul-
tiple epochs of sampling to obtain a compact cell. In each
epoch, to update He and Ha, we sample an operation for
each edge to form a cell and evaluate it by training a model
stacked by it one epoch. Then, to update the probability P ,
we define the differential of sampling epochs as a 6×6 ma-
trix ∆He where ∆He

i,j = He
i − He

j . Similarly, we define
the differential of performance as ∆Ha. The probability P
is updated as follows:

Pi ← Pi + γ(
∑
j

I(∆He
i,j < 0,∆Ha

i,j > 0)−

∑
j

I(∆He
i,j > 0,∆Ha

i,j < 0))
(1)

where γ is a hyper-parameter and I is the indicator function.
The probabilities of operations with fewer sampling epochs
and higher performance are enhanced and vice versa. For
the final cell, operation with the highest probability in each
edge is selected, then edges with top-2 probabilities for each
intermediate node are used. The node value is equal to
element-wise addition of results of these edges.
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Figure 1. Average accuracy on learned tasks in CIFAR100-10.

B. Experiment

B.1. Benchmarks

To evaluate the performance of our method, we conduct
experiments on multiple benchmarks for task incremental
learning.

At first, we evaluate our method on two benchmarks con-
taining a sequence of mixed similar and dissimilar tasks, in-
cluding CTrL [5] and Mixed CIFAR100 and F-CelebA [2].
CTrL [5] includes 6 streams of visual image classification
tasks. If t is a task in the stream, CTrL denotes a task as
t− and t+ whose data is sampled from the same distribu-
tion as t, but with a much smaller or larger labeled dataset,
respectively. Moreover, t′ and t′′ are tasks that are similar
to task t, while there are no relation between ti and tj for
all i ̸= j. Then, the 6 streams in CTrl are as follows: S− =
(t+1 , t2, t3, t4, t5, t

−
1 ) is used to evaluate the ability of direct

transfer; S+ = (t−1 , t2, t3, t4, t5, t
+
1 ) is used to evaluate the

ability of knowledge update; Sin = (t1, t2, t3, t4, t5, t
′
1) and

Sout = (t1, t2, t3, t4, t5, t
′′
1) are used to evaluate the trans-

fer to similar input and output distributions respectively;
Spl = (t1, t2, t3, t4, t5) is used to evaluate the plasticity;
Slong consists of 100 tasks and is used to evaluate the scal-
ability. Following the MNTDP [6], we list the details of
streams in Table other than stream S long. The details of
stream S long are provided in the file “ctrl long info.txt” in
supplementary. Similarly, Mixed CIFAR100 and F-CelebA
[2] including mixed similar tasks from F-CelebA and dis-
similar tasks from CIFAR100 [3]. F-CelebA consists of 10
tasks selected from LEAF [1] that containing images of a
celebrity labeled by whether he/she is smiling or not. CI-
FAR100 is split to 10 tasks and each task has 10 classes.

Further, we conduct experiments on classical task
incremental learning benchmarks including CIFAR10-
5, CIFAR100-10, CIFAR100-20 and MiniImageNet-20.
CIFAR10-5 is constructed by dividing CIFAR10 [3] into 5
tasks and each task has 2 classes. Similarly, CIFAR100-10
and CIFAR100-20 are constructed by dividing CIFAR100
[3] into 10 tasks with 10 classes and 20 tasks with 5 classes
respectively. MiniImageNet-20 is constructed by dividing
MiniImageNet [7] into 20 tasks and each task has 5 classes.

B.2. Comparison with Baselines

The performance of PAR on classical benchmarks
CIFAR100-20 and CIFAR10-5 are listed in Tab. 2 and
Tab. 3. Experimental results show that, compared with
baselines, PAR can achieve better performance.

To track the performance of the model over time/task,
the Fig. 1 presents the average accuracy curve on learned
tasks in the CIFAR100-10

We also compare the time efficiency of our method with
other methods on CIFAR100-10. Experimental results on
Tab. 4 show that, thanks to the hierarchical architectural
search, our method is faster than other approaches based on
architecture search, such as LTG. Our method is faster than
PN, which is a parameter allocation method without NAS
based on dynamic model. The reason is that PN uses the
entire model to learn each new task and the GPU memory,
parameters, and time overhead of PN explode as the task
number increases.

B.3. Ablation Study

We analyze the impact of hyper-parameter β and the re-
sults are listed in Tab. 5. We set the value of α to 0.5 and ex-
perimental results show that the performance of our method
is stable when the value of β is different. As expected, the
results show that β has a major impact on the time overhead
of our approach because it affects the frequency of architec-
ture search in the coarse-grained and fine-grained spaces.

C. More visualizations of task distance

To further analyze the validity of our approach, we
present heat-maps of task distance in CIFAR100-10,
CIFAR100-coarse and stream Spl. As shown in Fig. 2a,
many tasks in CIFAR100-10 are relevant (< 0.5) to each
other and can share the same expert. On the contrary, as
shown in Fig. 2b, in the stream Spl, which contains sev-
eral tasks that vary widely and is designed for evaluating
the plasticity, the task distance obtained by our method is
relatively large. The task distance in CIFAR100-coarse is
shown in Fig. 3.
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Stream T1 T2 T3 T4 T5 T6

S−
Datasets Cifar-10 MNIST DTD F-EMNIST SVHN Cifar-10

# Train Samples 4000 400 400 400 400 400
# Val Samples 2000 200 200 200 200 200

S+
Datasets Cifar-10 MNIST DTD F-MNIST SVHN Cifar-10

# Train Samples 400 400 400 400 400 4000
# Val Samples 200 200 200 200 200 2000

S in
Datasets R-MNIST Cifar-10 DTD F-MNIST SVHN R-MNIST

# Train Samples 4000 400 400 400 400 50
# Val Samples 2000 200 200 200 200 30

Sout
Datasets Cifar-10 MNIST DTD F-MNIST SVHN Cifar-10

# Train Samples 4000 400 400 400 400 400
# Val Samples 2000 200 200 200 200 200

Spl
Datasets MNIST DTD F-MNIST SVHN Cifar-10

# Train Samples 400 400 400 400 4000
# Val Samples 200 200 200 200 2000

Table 1. Details of streams in CTrL.
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Figure 2. The heat-maps of task distances.

Method CIFAR100-20
AP AF

Finetune 0.554 -0.259
EWC 0.556 -0.235
iCaRL 0.581 -0.242

A-GEM 0.544 -0.220
GCL 0.745 -0.065
ACL 0.781 0.000
FAS 0.808 0.000

PAR(ours) 0.861 -0.043

Table 2. Performance on CIFAR100-20.
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Figure 3. Heat-map of task distance in CIFAR100-coarse.
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Method
CIFAR10-5

AP(%) AF(%)

Finetune 0.530 -0.410

EWC 0.649 -0.202
IMM 0.761 -0.104
MAS 0.587 -0.089
LwF 0.867 -0.071

GPM† 0.886 -0.027

RPSnet 0.670 -
InstAParam 0.838 -

Independent 0.930 0.000
PN 0.925 0.000

Learn to Grow 0.912 0.000
BNS† 0.914 0.007

PAR 0.946 -0.006

Table 3. Performance on CIFAR10-5. †corresponds to perfor-
mance based on AlexNet.

Method Average Performance(AP) Time(h)

Finetune 0.180 0.5
PN 0.821 1.6

Learn to Grow 0.791 3.0
PAR 0.849 0.9

Table 4. Comparison of time efficiency on CIFAR100-10.

β Average Performance M(M) Time(h)

0.5 0.841 12.306 1.4
0.7 0.844 12.147 1.4
1.0 0.849 12.165 0.9
1.2 0.849 12.213 1.0
1.5 0.846 12.165 0.9

Table 5. Ablation study of the hyper-parameter β. The α is set to
0.5.
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