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(Supplementary Material)

A. Implementation Details

2D Data Preparation. Since each 3D scan in the 3DSSG
dataset [6] is associated with RGB sequences with known
camera poses, thus it is possible to extract 2D image patches
associated with each point cloud instance Pi. We first
project the 3D points in Pi to each RGB frame according
to the given camera pose, and then calculate the area of the
enlarged bounding box surrounded by the projected points.
Since then, we rank the frames in the descending order of
these areas and select the image patches in the bounding
boxes in the top-N frames as the N-view image patches of
the instance Pi. The visual features oi corresponding to Pi

are thus generated by mean pooling the visual features of
N-view image patches through a fixed CLIP vision encoder
that has been finetuned on 3DSSG [3, 6].

Architecture Details. We adopt a simple PointNet [5] as
the 3D node encoder. As for the 2D node encoder, we use
Vit-B-32 architecture [2] as the backbone of the CLIP im-
age encoder. The feature dimension of all the node and edge
features in the oracle and 3D model is set to be 512. The
structure of GNN is borrowed from SGFN [8], which uses
a FAT mechanism to combine neighboring features. All the
multi-head self attention (MHSA) or multi-head cross at-
tention (MHCA) structures in our method use 8 heads, with
a hidden feature size of 512. According to our experiments,
ρ(·, ·) in Ltri-emb is implemented with ℓ1 norm, and the ρ(·, ·)
in Lnode-init is implemented with negative cosine distance.

Splits of Predicates. We split the 26 predicate classes into
three parts: head, body, tail. In detail, we sort the predicates
according to their frequencies in the training set in descend-
ing order and select the top 8 categories as head classes, the
last 12 categories as tail classes, and the remaining 6 cate-
gories as body classes. You can refer to Tab. S1.

B. More Experiments

B.1. Comparison with Knowledge Distillation
Scheme.

To prove the superiority of our proposed VL-SAT
scheme, we design a knowledge distillation (KD) scheme
as in Fig. S1, which adheres to a teacher-student paradigm.
The teacher is a multi-modal model, which fuses visual
and geometrical information using bi-directional cross-
attention. Besides, to compare with our VL-SAT scheme
in a fair manner, we also leverage linguistic assistance in
the KD scheme. The student model is the same as our
non-VL-SAT model. The knowledge transfer process from
teacher to student is implemented with traditional mimic
loss and KL loss. As shown in Tab. S2, since our ora-
cle model trained with VL-SAT scheme can combine multi-
modal knowledge more effectively, the performance is bet-
ter than the teacher model of KD scheme among all met-
rics, e.g. 2.1% gains on predicate mA@1. Besides, VL-
SAT (ours) outperforms KD (student) with 2.1% gains on
triplet mA@50. We think the performance degradation of
KD scheme is because the teacher model has a different net-
work structure compared with the student model, and the
heterogeneous network structures may hinder the knowl-
edge transfer process as indicated in [7].

B.2. Can RGB Information on Point Cloud Boost
3DSSG Prediction As Well?

Since the VL-SAT scheme boosts 3DSSG prediction sig-
nificantly, it is intuitive to think about whether adding RGB
information directly into 3D point cloud could also do well.
We conduct such experiments (namely, BaseCLIP since we
employ ClIP-initialized object classifier in this baseline) in
Tab. S3 and find that simply concatenating RGB values to
point cloud’s XYZ coordinates (as BaseCLIP (XYZ+RGB))
brings moderate performance drop (as BaseCLIP (XYZ)) in
3DSSG prediction task. We doubt it is due to over-fitting
on RGB values as indicated in [4]. The experiment results
also validate the necessity of our VL-SAT scheme.

1



2D Node
Encoder

3D Segmented Objects

2D Images frames

3D Node 
Encoder

Edge 
Encoder

Teacher Object
Features

Teacher Edge 
Features

Triplet-Level
Regularization

Teacher 
Object

Classifier
×#

3D Node
Features

GNN

Teacher Model

Teacher
Predicate

Logits

Teacher
Object
Logits

3D Predicate 
Initialize Feature

Teacher Predicate
Features

2D Node
Features

SA
SA CA

CA

Fusion 
M

odule

Frozen CLIP
Text Encoder

“A scene of a sofa close 
by a coffee table.”

Teacher 
Predicate
Classifier

3D Segmented Objects 3D Node 
Encoder

Edge 
Encoder

3D Predicate 
Initialize Feature

Student Model

GNN

Student Predicate 
Features

Student Edge 
Features

Student Object
Features

×#

Student Node
Features

Student Object Logits

Student 
Object

Classifier

Student 
Predicate
Classifier

Student Predicate Logits

Mimic Loss

KL Loss On Predicate

KL Loss On Object

2D Node
Encoder

2D Images frames

3D Node 
Encoder

Edge 
Encoder

Teacher Object
Features

Teacher Edge 
Features

Triplet-Level
Regularization

Teacher 
Object

Classifier
×#

3D Node
Features

GNN

Teacher Model

Teacher
Predicate

Logits

Teacher
Object
Logits

3D Predicate 
Initialize Feature Teacher Predicate

Features

2D Node
Features

SA
SA CA

CA

Fusion 
M

odule

Frozen CLIP
Text Encoder

“A scene of a sofa close 
by a coffee table.”

Teacher 
Predicate
Classifier

3D Node 
Encoder

Edge 
Encoder

3D Predicate 
Initialize Feature

Student Model

GNN

Student Predicate 
Features

Student Edge 
Features

Student Object
Features

×#

Student Node
Features

Student Object Logits

Student 
Object

Classifier

Student 
Predicate
Classifier

Student Predicate Logits

Mimic

Teacher Predicate Logits Student Predicate LogitsPredicate KL Loss

Teacher Object Logits Student Object LogitsObject KL Loss

Figure S1. The Teacher-Student Model based on the Knowledge Distillation Scheme. During training, the teacher model transfers its
knowledge to the student model via feature mimic. Besides, we also add KL loss between teacher logits and student logits on both object
and predicate classifiers to advance the knowledge transfer process. During inference, the student model takes the same inputs as the 3D
model in our VL-SAT scheme.

Split Predicate
Head left, right, front, behind, close by, same as, attached to, standing on
Body bigger than, smaller than, higher than, lower than, lying on, hanging on
Tail supported by, inside, same symmetry as, connected to, leaning against, part of, belonging to, build in, standing in, cover, lying in, hanging in

Table S1. Splits of predicates.

Method Predicate Triplet
mA@1 mA@3 mA@5 mA@50 mA@100

SGFN 41.89 70.82 81.44 58.37 67.61
KD (Teacher) 53.57 72.37 86.18 73.31 81.08

VL-SAT (Oracle) 55.66 76.28 86.45 74.10 81.38
KD (Student) 52.22 72.50 83.18 62.92 71.75

VL-SAT (Ours) 54.03 77.67 87.65 65.09 73.59

Table S2. Results of different knowledge transfer methods. We
refer to the multi-modal teacher-student model as Knowledge Dis-
tillation (KD) scheme, and then we compare the results with our
VL-SAT scheme.

B.3. Influence of Visual Assistance.

To investigate the influence of visual assistance, we con-
duct experiments without linguistic assistance, i.e. CLIP-
based object classifier initialization, CLIP-based triplet-
level regularization, during training. As shown in Tab. S4,
with only visual assistance, our method still obtains 6.66%
gain on predicate mA@1 and 3.27% gain on triplet
mA@50. Furthermore, we try the visual encoder pretrained
on ImageNet21K [1] dataset, which shares the same net-

Model Object Predicate Triplet
A@5 A@10 mA@3 mA@5 mA@50 mA@100

BaseCLIP (XYZ) 79.03 86.81 72.50 83.59 60.65 69.71
BaseCLIP (XYZ+RGB) 76.35 84.19 71.45 79.10 58.76 67.67

VL-SAT(ours) 78.66 85.91 77.67 87.65 65.09 73.59

Table S3. Results of different inputs. We figure out whether
adding RGB information directly into the 3D point cloud (XYZ)
input can boost 3DSSG prediction performance as our VL-SAT
scheme does. BaseCLIP shares the same network architecture as
non-VL-SAT but leverages CLIP-initialized object classifier.

work structure as the CLIP pretrained visual encoder used in
our VL-SAT. The ImageNet21K pretrained visual encoder
also shows performance gains over non-VL-SAT model, but
is inferior to our CLIP pretrained visual encoder. The result
shows that the CLIP pretrained visual encoder possesses a
stronger representation ability over the ImageNet21K pre-
train visual encoder.



Backbone Predicate Triplet
mA@1 mA@3 mA@5 mA@50 mA@100

non-VL-SAT 41.99 70.88 81.67 59.58 67.75
CLIP Pretrained 48.65 76.12 87.09 62.85 71.60

ImageNet21k Pretrained 47.43 74.47 85.71 61.36 70.07

Table S4. Results of different visual encoders. We figure out the
influence of visual assistance and the influence of visual encoder
pretrained using different datasets. We conduct the experiments
with a variant of the VL-SAT scheme, which discards all the lin-
guistic assistance, i.e. CLIP-based object classifier initialization,
and CLIP-based triplet-level regularization.
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