
A. Appendix
A.1. Implementation details

A.1.1 Architectures

Figure A1 and Figure A2 show the architectures of the pro-
posed YOLOv7 P5 and YOLOv7 P6, respectively.

Figure A1. Architectures of YOLOv7 P5 models.

Figure A2. Architectures of YOLOv7 P6 models.

For E-ELAN architecture, since our edge device do not
support group convolution and shuffle operation, we are
forced to implement it as an equivalence architecture, which
is shown in Figure A3.

Figure A3. Equivalence E-ELAN.

The designed equivalence E-ELAN makes it easier for us
to implement partial auxiliary head. E-ELAN with normal
auxiliary head and partial auxilary head are shown in Figure
A4.

Figure A4. Partial auxilary head on E-ELAN.

Here we show how we make coarse-to-fine constraint
lead head guided label assigner in Figure A5. We make
a dynamic constraint by limiting the decoder of two addi-
tional candidate positive grids (yellow grids in the figure).
Theoretically, yellow grids need to predict the range in [-
1, 2] to fit ground truth bounding box, and we make the
decoder can only predict in the range of [-0.5, 1.5]. This
constraint makes the model can automatically learn the pink
grids and yellow grid at different levels.

Figure A5. Coarse-to-fine lead head guided label assigner.



A.1.2 Hyper-parameters

We have three different training hyper-parameters set-
tings. One is for YOLOv7-tiny, one is for YOLOv7 and
YOLOv7x, and the last one is for YOLOv7-W6, YOLOv7-
E6, YOLOv7-D6, and YOLOv7-E6E. The hyper-parameter
setting are follow updated YOLOR github code.

An additional training hyper-parameter is top k of
simOTA. To train 640 × 640 models, we follow YOLOX
to use k = 10. For 1280 × 1280 models, as described in
previous section, 3-NN candidate postive grids are used in
our training. That is to say, when input resolution grows,
the candidate positive grids will grow along two directions,
not four directions. Therefore, we set k = 20 on simOTA
to train 1280 × 1280 models.

A.1.3 Re-parameterization

Merging Convolution-BatchNorm-Activation into
Convolution-Activation at inference time is a well-
known technique, and its cprresponding formulas are
shown in Figure A6. RepConv has become a popular
re-parameterization method in recent years. Here we show
how the YOLOR implicit knowledge can be merged into
convolutional layer when addition or multiplication is used
to combine implicit knowledge and representation. Figure
A7 shows the formula to re-parameterize the implicit
knowledge of YOLOR and the convolutional layer.

Figure A6. Batch normalization as trainable BoF.

Figure A7. YOLOR implicit knowledge as trainable BoF.

A.2. More experiments

In Table A1 and Table A2 we respectively show the full
ablation studies of proposed auxiliary head learning strate-
gies and ablation studies of proposed compound scaling
method and extended ELAN.

Table A1. Ablation study on auxiliary head.

Model APval APval
50 APval

75

base (v7-E6) 55.6% 73.2% 60.7%
independent 55.8% 73.4% 60.9%
lead guided 55.9% 73.5% 61.0%
c2f lead guided without constraint 55.9% 73.5% 61.0%
c2f lead guided with constraint 55.9% 73.5% 61.1%
improvement +0.3 +0.3 +0.4

base (v7-E6E) 56.3% 74.0% 61.5%
c2f lead guided with constraint 56.5% 74.0% 61.6%
partial c2f lead guided with constraint 56.8% 74.4% 62.1%
improvement +0.3 +0.4 +0.5

Table A2. Ablation study on compond scaling and E-ELAN.

Model #Param. FLOPs APval APval
50 APval

75

base (v7-E6) 97.2M 515.2G 55.9% 73.5% 61.1%
compond scaling (v7-D6) 154.7M 806.8G 56.3% 73.8% 61.4%
extended ELAN (v7-E6E) 151.7M 843.2G 56.8% 74.4% 62.1%
improvement - - +0.5 +0.6 +0.7

In Figure A8 we show the objectness map predicted by
different methods at auxiliary head and lead head. From
Figure A8 we find that if auxiliary head learns lead guided
soft label, it will indeed help lead head to extract the resid-
ual information from the consistant targets.

Figure A8. Objectness map predicted by different methods at aux-
iliary head and lead head.



Table A3. More comparison (batch=1, no-TRT, without extra object detection training data, sorted by FLOPs)

Model #Param. FLOPs Size FPSV 100 APtest / APval APtest
50 APtest

75

YOLOv5-N (r6.1) [1] 1.9M 4.5G 640 159 - / 28.0% - -
YOLOv7-tiny-SiLU 6.2M 13.8G 640 286 38.7% / 38.7% 56.7% 41.7%
YOLOv5-S (r6.1) [1] 7.2M 16.5G 640 156 - / 37.4% - -
PPYOLOE-S [2] 7.9M 17.4G 640 208 43.1% / 42.7% 60.5% 46.6%
YOLOv5-N6 (r6.1) [1] 3.2M 18.4G 1280 123 - / 36.0% - -
YOLOX-S [3] 9.0M 26.8G 640 102 40.5% / 40.5% - -
YOLOv5-M (r6.1) [1] 21.2M 49.0G 640 122 - / 45.4% - -
PPYOLOE-M [2] 23.4M 49.9G 640 123 48.9% / 48.6% 66.5% 53.0%
YOLOv5-S6 (r6.1) [1] 12.6M 67.2G 1280 122 - / 44.8% - -
YOLOX-M [3] 25.3M 73.8G 640 81 47.2% / 46.9% - -

YOLOv7 36.9M 104.7G 640 161 51.4% / 51.2% 69.7% 55.9%
YOLOv5-L (r6.1) [1] 46.5M 109.1G 640 99 - / 49.0% - -
PPYOLOE-L [2] 52.2M 110.1G 640 78 51.4% / 50.9% 68.9% 55.6%
YOLOR-CSP [4] 52.9M 120.4G 640 106 51.1% / 50.8% 69.6% 55.7%
YOLOX-L [3] 54.2M 155.6G 640 69 50.1% / 49.7% - -
Deformable DETR [5] 40.0M 173.0G - 19 - / 46.2% - -
YOLOv7-X 71.3M 189.9G 640 114 53.1% / 52.9% 71.2% 57.8%

YOLOv5-M6 (r6.1) [1] 35.7M 200.0G 1280 90 - / 51.3% - -
YOLOv5-X (r6.1) [1] 86.7M 205.7G 640 83 - / 50.7% - -
PPYOLOE-X [2] 98.4M 206.6G 640 45 52.2% / 51.9% 69.9% 56.5%
YOLOR-CSP-X [4] 96.9M 226.8G 640 87 53.0% / 52.7% 71.4% 57.9%
F-RCNN-R101-FPN+ [6] 60.0M 246.0G 1333 20 - / 44.0% - -
DETR DC5-R101 [6] 60.0M 253.0G 1333 10 - / 44.9% - -
YOLOX-X [3] 99.1M 281.9G 640 58 51.5% / 51.1% - -

YOLOR-P6 [4] 37.2M 325.6G 1280 76 53.9% / 53.5% 71.4% 58.9%
YOLOv7-W6 70.4M 360.0G 1280 84 54.9% / 54.6% 72.6% 60.1%
EfficientDet-D7x [7] 77.0M 410.0G 1536 6.5 55.1% / 54.4% 72.4% 58.4%
YOLOv5-L6 (r6.1) [1] 76.8M 445.6G 1280 63 - / 53.7% - -
YOLOR-W6 [4] 79.8G 453.2G 1280 66 55.2% / 54.8% 72.7% 60.5%
YOLOv7-E6 97.2M 515.2G 1280 56 56.0% / 55.9% 73.5% 61.2%
YOLOR-E6 [4] 115.8M 683.2G 1280 45 55.8% / 55.7% 73.4% 61.1%

YOLOv7-D6 154.7M 806.8G 1280 44 56.6% / 56.3% 74.0% 61.8%
Dual-Swin-T (C-M-RCNN) [8] 113.8M 836.0G 1333 6.5 - / 53.6% - -
YOLOv5-X6 (r6.1) [1] 140.7M 839.2G 1280 38 - / 55.0% - -
YOLOv7-E6E 151.7M 843.2G 1280 36 56.8% / 56.8% 74.4% 62.1%
YOLOR-D6 [4] 151.7M 935.6G 1280 34 56.5% / 56.1% 74.1% 61.9%
Swin-B (C-M-RCNN) [9] 145.0M 975.0G 1333 5.9 - / 51.9% - -
Swin-B (C-M-RCNN) [9] 145.0M 982.0G 1333 11.6 - / 51.9% - -
ViT-Adapter-B [10] 122.0M 997.0G - 4.4 - / 50.8% - -
Dual-Swin-B (HTC) [8] 235.0M - 1600 2.5 58.7% / 58.4% - -
Dual-Swin-L (HTC) [8] 453.0M - 1600 1.5 59.4% / 59.1% - -

Model #Param. FLOPs Size FPSA100 APtest / APval APtest
50 APtest

75

DN-Deformable-DETR [11] 48.0M 265.0G 1333 23.0 - / 48.6% - -
DINO-5scale (R50) [12] 47.0M 860.0G 1333 10.0 - / 51.0% - -
ConvNeXt-B (C-M-RCNN) [13] - 964.0G 1280 11.5 - / 54.0% 73.1% 58.8%
Swin-B (C-M-RCNN) [9] - 982.0G 1280 10.7 - / 53.0% 71.8% 57.5%
ConvNeXt-L (C-M-RCNN) [13] - 1354.0G 1280 10.0 - / 54.8% 73.8% 59.8%
Swin-L (C-M-RCNN) [9] - 1382.0G 1280 9.2 - / 53.9% 72.4% 58.8%
ConvNeXt-XL (C-M-RCNN) [13] - 1898.0G 1280 8.6 - / 55.2% 74.2% 59.9%

B. More comparison
As shown in Table A3 and Figure A9, YOLOv7 sur-

passes all known object detectors in both speed and ac-
curacy in the range from 5 FPS to 160 FPS and has the
highest accuracy 56.8% AP test-dev / 56.8% AP min-val
among all known real-time object detectors with 30 FPS
or higher on GPU V100. YOLOv7-E6 object detector (56
FPS V100, 55.9% AP) outperforms both transformer-based

detector SWIN-L Cascade-Mask R-CNN (9.2 FPS A100,
53.9% AP) by 509% in speed and 2% in accuracy, and
convolutional-based detector ConvNeXt-XL Cascade-Mask
R-CNN (8.6 FPS A100, 55.2% AP) by 551% in speed and
0.7% AP in accuracy, as well as YOLOv7 outperforms:
YOLOR, YOLOX, Scaled-YOLOv4, YOLOv5, DETR, De-
formable DETR, DINO-5scale-R50, ViT-Adapter-B and
many other object detectors in speed and accuracy.



Figure A9. Comparison with other object detectors.

B.1. More results

Figure A10. Architectures of YOLOv7-mask and YOLOv7-pose.

B.1.1 YOLOv7-mask

We integrate YOLOv7 with BlendMask [14] to do instance
segmentation. We simply fine-tune YOLOv7 object detec-
tion model on MS COCO instance segmentation dataset and
trained for 30 epochs. It achieves state-of-the-art real-time
instance segmentation result. The architecture of YOLOv7-
mask and the corresponding results are shown in Figure
A10 (a) and Figure A11, respectively.

Figure A11. Sample results after applying YOLOv7-mask.

B.1.2 YOLOv7-pose

We integrate YOLOv7 with YOLO-Pose [15] to do key-
point detection. We follow the same setting as [15] to fine-
tune YOLOv7-W6 people detection model on MS COCO
keypoint detection dataset. YOLOv7-W6-pose achieves
state-of-the-art real-time pose estimation result. The archi-
tecture and sample results are shown in Figure A10 (b) and
Figure A12, respectively.

Figure A12. Sample results after applying YOLOv7-pose.

B.1.3 YOLOv7-AF

We integrate YOLOv7 with YOLOv6 (v1.0) [16] and
YOLOv5 (r7.0) [18] to do anchor-free object detection and
make comparison to methods released after CVPR submis-
sion in Table A4.

Table A4. YOLOv7-AF (anchor free).

Model date #Param. FLOPs APval APval
50 APval

75

PPYOLOEX [2] (2022.03) 98.4M 206.6G 52.3% 69.5% 56.8%
YOLOv6L (v2.0) [17] (2022.09) 58.5M 144.0G 51.0% - -
YOLOv5X (r7.0) [18] (2022.11) 86.7M 205.7G 50.7% 68.9% -
YOLOv7-AF (2022.11) 43.6M 130.5G 53.0% 70.2% 57.5%
RTMDetX [19] (2022.12) 94.9M 141.7G 52.8% 70.4% -
YOLOv8L [20] (2023.01) 43.7M 165.2G 52.9% - -
YOLOv6L (v3.0) [21] (2023.01) 59.6M 150.7G 51.8% 69.2% -
1 All models are trained from scratch and without knowledge distillation.
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