
A. Supplementary Overview
In what follows we first provide more exhaustive details

on our training and evaluation datasets in Section B, be-
fore then detailing our pre-training configuration in C. Sec-
tion D shows the effect of masking CLIP input in the low-
data regime. Sections E, F and G show more results that
were used to compare MAE-CLIP and CLIP. In Section H
we explain our VQA evaluation setup, and in Section I we
cover zero-shot segmentation. Finally, Section J gives back-
ground on our choice of “similarity masking” (as described
in the main paper) over random masking, and Section K
provides updated results for our large-scale M3AE [31] run,
as at the time of submission we were unable to provide re-
sults for a fully trained baseline.

B. Datasets
In this section we describe our pre-training dataset, and

also provide background as to why there are two missing
tasks in our VTAB [106] evaluation.

B.1. Pre-training Data
We made use of two internal datasets as well as sev-

eral public datasets to build our “large-scale” pre-training
dataset.

High Quality Image Text Pairs dataset: The High
Quality Image Text Pairs (HQITP-134M) dataset consists of
approximately 134M diverse and high quality images paired
with descriptive captions and titles. Images range in spatial
resolution from 320 to 2048 pixels on the short side. All
images are JPEG format and most are RGB. Each example
image is associated with a title, and a list of several cap-
tions. A small fraction (⌧ 1%) of the examples are missing
both captions and title. We favor the associated captions,
and find that these tokenize to an average length of 20.1 to-
kens, although the shortest caption is only one token and
the longest is over 1, 000. This dataset was licensed to our
industrial research lab by a third party for commercial use.

English Web Image Text dataset: The English-Web-
Image-Text-2.2B (EWIT-2.2B) dataset consists of approxi-
mately 2.2B images paired with one or more related pieces
of text. The data is the result of filtering English-language
web-sourced data, using a combination of the filtering rules
described in ALIGN [44] and CLIP [68]. Images range in
spatial resolution from 200 to 5000 pixels on the short side,
and 200 to 8650 on the long side, with a maximum aspect
ratio of 3 and a mean of 1.385. Each image has an average
of 1.341 pieces of text associated with it, although some
have as many as 179. We find that the average associated
text produces 15.5 tokens when tokenized.

Public datasets: As well as our internal datasets, we
include Conceptual 12M (CC12M) [7], CC3M [76], and
LAION-400M [74].

Overall pre-training dataset: Our overall training
dataset is the result of combining HQITP-134M, CC12M,
CC3M, and LAION-400M, before applying global image-
byte-level de-duplication to drop image text pairs where ei-
ther the image occurs more than once or the image occurs
in one of our test sets. This results in a final training dataset
of just over 1.4B image-text pairs.

B.2. VTAB Evaluation Data
In Sections 4 and 5 in the main paper we evaluate the

quality of the learned visual representations by training
a linear classifier on the predicted visual features of the
VTAB datasets [105]. However, we do not include the Di-
abetic Retinopathy [46] dataset due to licensing concerns
(the original dataset was provided solely for use in a Kag-
gle competition), and Sun397 [92], due to a missing image
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at the time of preparing the datasets for the VTAB bench-
mark. The issue with Sun397 has since then been resolved,
and it could be included in a future iteration of this work.

Component Parameter Value

Image Encoder Depth 12
Width 768
MLP Heads 12

Text Encoder Depth 12
Width 512
MLP Heads 8

Decoder Depth 8
Width 512
MLP Heads 8

Model Weight decay 0.1
Base LR 5e-04
LR Schedule Cosine decay [59]
LR Warmup steps 200
Local contrastive steps [33] 500
Batch size 256
Optimizer AdamW [60]
Optimizer momentum �1 , �2 = 0.9, 0.98
Augmentation RandomResizedCrop

Table 8. Parameters used for pre-training

C. Training configuration
Table 8 shows the used hyperparameter setup for pre-

training of MAE-CLIP and all our baselines. Following
[68], we use an AdamW optimizer [48, 60], a linear learn-
ing rate warmup over 200 steps before then decaying to 0
with a cosine schedule [59] over the remainder of train-
ing. Using warmup steps, (where only a local contrastive
loss is used instead of a global contrastive loss), helps the
model to converge faster at the beginning of training. To
train MAE-CLIP, we simply sum the contrastive and gen-
erative losses for the local contrastive phase of training, but
multiply the generative image loss by 0.05 and the genera-
tive text loss by 0.1 when computing the global contrastive
loss. This allows us to accommodate for the dramatically
reduced gradient norm of a global contrastive loss with a
large batch size, and was arrived at through hyperparameter
search. For the image encoder, initial empirical experimen-
tation showed that using a trainable or fixed position encod-
ing does not influence results and we therefore use a fixed
2D position encoding. For both image and text encoders,
we use pre-layer-norm [94] and the initialization scheme
from [70].

We use the same training configuration for the web-
crawled dataset, with a few changes due to the larger num-
ber of total steps. We use 10, 000 local contrastive loss
steps, and 1, 000 warmup steps for the cosine learning rate
scheduler.
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Models Zero-shot Linear Probing
masked CLIPMAP 23.0 (29.7) 48.0 (52.6)
masked CLIPGAP 23.6 (29.3) 51.7 (59.8)
MAE-CLIP 33.8 58.9

Table 9. ImageNet classification with zero-shot transfer or linear
probing after pretraining on the CC dataset. CLIP is trained on
masked input, showing unmasked performance between brackets.

Model COCO FLICKR COCOA
I!T T!I I!T T!I T1 T5

CLIPGAP 51.9 36.6 78.8 62.3 24.2 46.9
CLIPMAX 55.3 39.0 80.5 65.3 22.7 51.6
MAE-CLIPGAP 53.0 37.0 77.3 62.0 20.7 39.5
MAE-CLIPMAX 54.4 37.7 81.2 64.2 24.6 41.4

Table 10. Zero-shot (retrieval) accuracy (%). All trained on our
web-crawled dataset (1.4B images). I!T: Image to Text, T!I:
Text to Image.

D. Masking influence
In MAE-CLIP, we never mask the input for the con-

trastive task. However, one can argue that in the low-
data regime, masking is a heavy data augmentation that im-
proves performance (similar to how e.g. DINO [6] has great
performance in the low-data regime, likely also because of
its heavy data augmentations). We therefore also run an ab-
lation where the input to a contrastive-only (normal CLIP)
model is masked, similar to how input is masked for the
generative task in MAE-CLIP.

E. Retrieval results
Table 10 shows zero-shot retrieval accuracy for three dif-

ferent datasets. We compare COCO [58], FLICKR [67] and
COCOAmodal [83]. We chose COCOAmodal as a third re-
trieval evaluation set, as adding the masked auto-encoder
might have provided MAE-CLIP a benefit over CLIP on
occluded objects or non-object-centric datasets. We show
that even on non-object-centric datasets, CLIP outperforms
MAE-CLIP at scale.

F. VTAB Fine-tuning
As MAE is often used in a full-finetuning setting, we

also show that fully-finetuning follows the linear-probing
results (see Table 11). Adding masked autoencoding still
does not outperform a contrastive-only baseline in a large-
scale training. When training on CCxM only, we see MAE-
CLIP outperforming CLIP on average.

16



•
C

al
te

ch
10

1

•
C

IF
A

R
-1

00

•
D

TD

•
Fl

ow
er

s1
02

•
Pe

ts

•
SV

H
N

•
Eu

ro
SA

T

•
C

am
el

yo
n

•
R

es
is

c4
5

•
C

le
vr

/C
lo

se
st

•
C

le
vr

/C
ou

nt

•
D

M
La

b

•
dS

pr
ite

s/
O

ri

•
dS

pr
ite

s/
Lo

c

•
K

IT
TI

/D
is

t

•
sN

O
R

B
/A

zi
m

•
sN

O
R

B
/E

le
v

A
ve

ra
ge

MAE-CLIPGAP 92.6 84.2 74.4 95.1 85.7 80.2 97.0 88.0 92.9 87.1 84.3 71.0 96.4 100 46.8 99.0 95.0 86.5
MAE-CLIPMAX 95.9 86.3 80.3 97.5 90.4 97.3 98.9 88.8 95.6 87.1 84.1 72.7 96.1 100 53.4 99.3 96.6 89.4
CLIPGAP 96.0 87.7 81.8 98.1 90.7 97.4 98.8 85.7 95.9 87.8 80.0 72.5 96.5 100 51.0 98.7 93.6 88.9
CLIPMAX 95.5 86.3 81.1 98.0 90.6 97.6 98.9 89.6 96.2 87.6 80.1 73.6 96.2 100 52.9 99.4 95.9 89.4
MAE-CLIPGAP CCxM 91.9 80.9 70.5 91.2 82.7 96.3 98.5 88.0 95.5 79.6 67.7 66.0 96.3 100 49.6 99.7 85.9 84.7
MAE-CLIPMAX CCxM 90.8 81.6 69.0 90.3 81.0 96.8 98.4 89.5 95.3 69.0 74.3 67.4 956 100 48.0 98.7 83.6 84.1
CLIPGAP CCxM 91.1 81.3 69.7 91.8 81.1 96.2 98.1 85.9 95.3 75.1 65.1 64.6 96.4 100 48.6 99.6 78.0 83.4
CLIPMAX CCxM 89.6 80.6 68.4 90.3 79.8 96.5 98.4 87.1 95.3 78.3 72.2 64.0 96.0 100 47.3 99.8 76.3 83.5

Table 11. Full-finetuning accuracy (%) on classification tasks. Models are all trained on our web-crawled dataset (1.4B images) or CCxM
when specified.
• VTAB/natural, • VTAB/specialized and • VTAB/structured.

G. T-SNE analysis
We also visually inspect the generated embeddings us-

ing t-SNE [85], see Figure 3. There is no clear difference
between the embeddings of CLIP and MAE-CLIP, at scale
(see Figure 3a and Figure 3b). For CLIP, MAE-CLIP and
MAE trained on CCMxM, we can see that the MAE em-
beddings (see Figure 3e) look more cluttered than the CLIP
and MAE-CLIP embeddings.

H. VQA Finetuning
We evaluate on three VQA benchmark datasets CLEVR

[45], VQAv2 [34] and GQA [42]. As mentioned in the main
paper, we finetune our models for VQA, by freezing the
image and texts encoders and adding a new decoder. We
treat the problem as a classification problem by calculating
the set of possible answers and treating each as a separate
class. Following our pre-training setup, we concatenate the
image and text embeddings, add positional encoding and a
modality specific token before using it as input in the de-
coder. The BOS token is used as an output token and lin-
early projected to the possible classes. Figure 4 depicts our
finetuning pipeline.
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(a) CLIP (b) MAE-CLIP

(c) CLIP CCxM (d) MAE-CLIP CCxM

(e) MAE CCxM
Figure 3. T-sne visualizations for CLIP and MAE-CLIP, both large-scale training as CCXM.
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What is the material of the 
big purple object?

Image 
Encoder

Text 
Encoder

Positional
Encoding Decoder

BOS

+

+

Classification
Loss

❄❄

Figure 4. VQA Fine-tuning: decoder classification. Encoders are frozen, the BOS token of the decoder output is used as the classification
token.

I. Zero-shot Segmentation

In Section 6 in the main paper, we present results on
zero-shot semantic segmentation in order to evaluate the
effects of self-supervision on visual grounding. Here, we
describe our zero-shot semantic segmentation methodology
and present a quantitative evaluation on three datasets. In
particular, we use Pascal VOC [27], ADE20K [107] and
COCO [58] with 20, 150 and 133 labels respectively. To
compute segmentation masks, we first extract a feature per
input pixel using bilinear interpolation from the per-patch
features. Subsequently, we classify each pixel by comput-
ing the similarity of the feature to the embedding of the
prompt for each class.

Model Pooling COCO ADE20K Pascal VOC

CLIP MAP 8.4 4.6 19.1
MAE-CLIP MAP 9.1 5.7 20.6

CLIP GAP 7.6 4.1 19.4
MAE-CLIP GAP 8.5 5.5 20.4

CLIP MAX 16.5 9.4 36.6
MAE-CLIP MAX 17.8 11.1 36.9

Table 12. Zero-shot semantic segmentation results for CLIP and
MAE-CLIP after training on the CC dataset (11.3M images).
MAE-CLIP consistently improves upon CLIP for semantic seg-
mentation regardless of the pooling strategy, as also seen qualita-
tively in Figure 2 in the main paper.

Table 12 evaluates the performance of CLIP and MAE-
CLIP trained on the CC dataset with respect to mean inter-
section over union for all three datasets. We observe that
self-supervision consistently improves the performance of
CLIP for zero-shot semantic segmentation. However, as
mentioned in Section 6 in the main paper, the choice of
pooling operator has a much larger effect.

I.1. Prompts

In this section, we provide the prompts used for our zero-
shot semantic segmentation experiments. Each prompt is
made into a sentence by prepending “a photo of a” or “an”
depending on whether the label starts with a vowel. For
COCO [58] we simply use the 133 label names as they are
provided by https://github.com/cocodataset/
panopticapi. For Pascal VOC [27] we use

aeroplane, bicycle, bird, boat,

bottle, bus, car, cat, chair,

cow, table, dog, horse, motorbike,

person, potted plant, sheep, sofa,

train, television monitor

for classes 1 to 20 and

background, bag, bed, bench, book,

building, cabinet, ceiling, cloth,

computer, cup, door, fence, floor,

flower, food, grass, ground,

keyboard, light, mountain, mouse,

curtain, platform, sign, plate,

road, rock, shelves, sidewalk,

sky, snow, bedclothes, track, tree,

truck, wall, water, window, wood

for the 0-th class. Namely, if a pixel is classified
as any of the latter categories it is considered to be
a background pixel. Finally, for ADE20K [107] we
associate several prompots for each of the 150 cate-
gories. Subsequently, we compute the similarity of
each pixel with each of the prompts and select the
maximum similarity per category from all the associ-
ated prompts. The per-category prompts are as follows:
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1. wall, walls,

brick wall,

stone wall,

interior wall

2. building,

buildings,

edifice,

edifices

3. sky, clouds

4. floor,

flooring

5. tree, trees

6. ceiling

7. road, route,

street, roads,

streets,

routes

8. bed, beds

9. windowpane,

window,

windows

10. grass, grass

field

11. cabinet,

cabinets, wall

mounted cabine

12. sidewalk,

pavement

13. person, child,

girl, boy,

woman, man,

people,

children,

girls, boys,

women, men

14. earth, ground

15. door, double

door, doors

16. table, tables,

tablecloth

17. mountain,

mount,

mountains

18. plant, flora,

plant life,

plants, bushes

19. curtain,

drape,

drapery,

mantle, pall

20. chair, chairs

21. car,

automobile,

cars

22. water

23. painting,

picture,

paintings,

pictures,

wallart,

framed canvas

24. sofa, couch,

sofas, couches

25. shelf, shelves

26. house exterior

27. sea, ocean

28. mirror,

mirrors

29. rug, carpet,

carpeting

30. field

31. armchair,

armchairs

32. seat, seats

33. fence, fencing

34. desk, desks

35. rock, stone,

rocks, stones

36. wardrobe,

closet, press,

wardrobes,

closets

37. lamp, lamps

38. bathtub,

bathing tub,

bath, tub

39. railing, rail

40. cushion,

cushions

41. pedestal

42. box, boxes

43. column, pillar

44. signboard,

sign,

signboards,

signs

45. chest of

drawers,

chest, bureau,

dresser

46. counter

47. sand

48. sink

49. skyscraper,

skyscrapers

50. fireplace,

hearth, open

fireplace

51. refrigerator,

icebox

52. grandstand,

covered stand

53. path

54. stairs, steps

55. runway

56. case, display

case,

showcase,

vitrine

57. pool table,

billiard

table, snooker

table

58. pillow,

pillows

59. screen door,

shower door

60. stairway,

staircase

61. river

62. bridge, span

63. bookcase

64. window screen,

door screen

65. coffee table,

cocktail table

66. toilet,

commode,

crapper, potty

67. flower,

flowers

68. book, books

69. hill

70. bench, benches

71. countertop,

counter top,

worktop

72. stove, kitchen

stove, kitchen

range, kitchen

range, cooking

stove

73. palm tree,

palm trees

74. kitchen island

75. computer,

computing

machine,

computing

device, data

processor,

electronic

computer,

information

processing

system

76. swivel chair

77. boat

78. bar

79. arcade

machine,

arcade

machines

80. hovel, hut,

hutch, shack,

shanty

81. bus, autobus,

double-decker,

jitney,

motorbus,

motorcoach,

omnibus,

passenger

vehicle

82. towel

83. light bulb,

lightbulb,

bulb,

incandescent

lamp, electric

light,

electric-light

bulb

84. truck,

motortruck

85. tower, towers

86. chandelier,

pendant,

pendent

87. awning,

sunshade,

sunblind

88. streetlight,

street lamp

89. booth,

cubicle,

stall, kiosk

90. television

receiver,

television,

television

set, tv, tv

set

91. airplane,

aeroplane,

airplanes,

aeroplanes

92. dirt track

93. apparel,

wearing

apparel,

dress, clothes

94. pole

95. land, soil

96. bannister,

banister,

balustrade,

balusters,

handrail

97. escalator,

moving

staircase,

moving

stairway

98. ottoman, pouf,

pouffe, puff,

hassock

99. bottle,

bottles, water

bottle

100. buffet,

sideboard

101. poster,

posting,

placard,

notice, bill,

card

102. stage

103. van

104. ship

105. fountain

106. conveyer belt,

conveyor belt,

conveyer,

conveyor,

transporter

107. canopy

108. washer,

automatic

washer,

washing

machine

109. plaything,

toy, toys

110. swimming pool,

swimming bath

111. stool, stools

112. barrel, cask,

barrels, casks

113. basket,

handbasket

114. waterfall,

falls

115. tent,

collapsible

shelter

116. bag, bags,

gift bag,

paper bag

117. minibike,

motorbike

118. cradle

119. oven

120. ball, balls

121. food, solid

food

122. step, stair

123. tank, storage

tank

124. trade name,

brand name,

brand, marque

125. microwave,

microwave oven

126. plant pots,

plant pot,

flower pot,

flowerpot,

planter

127. animal,

animate being,

dog, cat,

horse, cow,

sheep, zebra,

girraffe, bird

128. bicycle, bike

129. lake

130. dishwasher,

dish washer,

dishwashing

machine

131. projection

screen

132. blanket, cover

133. sculpture,

sculptures

134. exhaust hood

135. sconce, sconce

lamp, sconce

light

136. vase, vases

137. traffic light,

traffic

signal,

traffic lights

138. tray, trays

139. ashcan, trash

can, garbage

can, wastebin,

ash bin,

ash-bin,

ashbin,

dustbin, trash

barrel, trash

bin

140. ceiling fan,

floor fan

141. pier, wharf,

wharfage, dock

142. crt screen

143. plate, plates

144. monitor,

monitoring

device,

monitors

145. bulletin

board, notice

board

146. shower

147. radiator

148. cup, cups,

drinking

glass,

drinking

glasses

149. clock

150. flag, flags

20



J. MAE-CLIP masking strategy
In Table 13 we compare random masking to similarity

masking for MAE-CLIPMAX, training on the CC dataset.
Our experiments show that both strategies perform very
similarly in all cases with random masking showing a small
improvement for classification tasks while similarity mask-
ing an improvement on VQA and semantic segmentation,
namely tasks that benefit from better visual grounding. All
MAE-CLIP experiments in the main paper employ similar-
ity masking. Further experiments are needed to properly
evaluate the effect of the masking strategy across different
scales and pooling methods.

K. M3AE results
This section provides an updated version of the “large-

scale” tables of results from Section 5 in the main paper.
They are presented in Tables 14, 15a and 15b. We include
these because our M3AE [31] baseline had not fully con-
verged at time of submission. All numbers except those
associated with M3AE are identical to the ones presented in
the main paper.

Firstly, we report the full linear probing evaluation on
the VTAB tasks (Table 14). We observe that M3AE per-
forms on par with MAE-CLIPGAP. Moreover, we note that
M3AE performs consistently worse for all VTAB natural
tasks while outperforming MAE-CLIP on VTAB strucuted
tasks. This trend also continues with the rest of the re-
sults, where M3AE performs measurably worse on Ima-
geNet linear-classification (Table 15a) while siginficantly
better on CLEVR VQA (Table 15b); the former being a very
natural task and the latter being very structured.
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Model Masking VQAAvg. SemSegAvg. VTABAvg IN1KLP INZS

MAE-CLIPMAX similarity 68.53 21.95 69.14 63.16 35.2
MAE-CLIPMAX random 68.44 21.27 69.92 63.46 35.4

Table 13. Similarity vs random masking for MAE-CLIPMAX trained on the CC dataset. We show average VQA, zero-shot semantic
segmentation (SemSeg), and VTAB results, as well as ImageNet1K (IN) Top-1 linear probe and zero-shot scores as measured on the
validation set.

Table 14. Linear probing accuracy (%) on classification tasks. Models are all trained on our web-crawled dataset (1.4B images). (•
VTAB/natural, • VTAB/specialized and • VTAB/structured.) In the large scale pretraining regime, the difference between MAE-CLIP and
CLIP is reduced to < 1%. This table provides the results for a fully trained M3AE compared to Table 5 in the main paper where M3AE
had completed 50% of the training steps.
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M3AE 94.0 75.6 78.8 96.1 84.6 67.8 97.2 85.3 92.4 65.4 75.9 52.0 57.4 79.2 51.1 40.6 68.3 74.2
CLIP 94.9 78.4 80.0 97.3 86.9 59.0 94.1 82.3 92.7 45.6 62.1 46.0 46.1 53.3 50.9 20.3 35.8 66.2
CLIPMAX 96.1 81.0 80.9 97.3 89.9 65.7 96.0 83.2 94.1 52.8 67.8 49.9 59.5 67.6 41.2 23.4 45.8 70.1
MAE-CLIPMAX 95.8 79.2 81.5 96.8 88.2 62.1 95.8 81.8 93.0 52.0 66.9 49.6 53.7 72.5 53.0 32.3 45.4 70.6
CLIPGAP 95.8 80.5 81.6 97.6 88.7 66.0 97.0 84.4 93.3 56.7 71.4 53.3 58.0 70.1 50.6 38.3 55.1 72.9
MAE-CLIPGAP 95.4 79.3 82.2 97.4 88.6 72.8 96.6 84.5 93.5 57.5 73.6 52.7 57.5 71.2 51.6 45.6 55.2 73.8

Models Zero-shot Linear Probing
M3AE – 71.5
CLIPGAP 61.8 75.9
CLIPMAX 63.7 77.5
MAE-CLIPGAP 57.4 75.7
MAE-CLIPMAX 60.9 76.6

(a) ImageNet classification

Model CLEVR VQAv2 GQA
M3AE 97.2 61.1 54.6
CLIPGAP 87.8 61.8 55.0
CLIPMAX 89.5 60.6 53.6
MAE-CLIPGAP 92.8 61.9 55.3
MAE-CLIPMAX 93.9 61.5 53.7

(b) VQA finetuning results

Table 15. ImageNet classification and VQA results after pretrain-
ing on web-crawled dataset (1.4B images). In the large scale
regime, self-supervision does not complement natural language
supervision and all methods perform similarly on both tasks. This
table provides updated results for M3AE (after it was fully trained)
compared to Tables 6 and 7 in the main paper.
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