
Supplemental Material for Joint Token Pruning and Squeezing Towards More
Aggressive Compression of Vision Transformers

Siyuan Wei1* Tianzhu Ye2* Shen Zhang1 Yao Tang1 Jiajun Liang1†

1MEGVII Technology 2Tsinghua University
{weisiyuan, zhangshen,tangyao02,liangjiajun}@megvii.com,ytz20@mails.tsinghua.edu.cn

1. Overview
In the supplemental materials, we show the following de-

tails of our joint Token Pruning & Squeezing (TPS):

• Visualizations.

• Details of two variants.

• TPS on hybrid ViTs.

• Detailed experiment settings.

• TPS on larger models and with larger input size.

• TPS under different keep ratios.

• More ablations about TPS design.

2. Visualizations
We demonstrate the additional cases from Ima-

geNet1K [1], which our TPS-DeiT and DeiT predict cor-
rectly but dynamicViT-DeiT predict wrongly. As Fig 2
shows, we found that the imperfect pruning policy brings
the loss of background context and incomplete subject,
which puzzles the model and leads to a close but incor-
rect prediction. However, our TPS conquers these cases by
squeezing the information of pruned tokens into similar re-
served tokens.

3. Details of Two Variants
We design two variants of TPS: dTPS and eTPS, to show

our flexibility and compare fairly with dynamicViT [7] and
EViT [5]. Theoretically, our TPS can be incorporated with
any token pruning method. In this paper, we choose dynam-
icViT and EViT as baselines for their strong performance
and concise forms. The major disparities between the two
variants are as follows:

Forward procedure. The TPS module drops the to-
kens from inputs practically except for the training stage

*The first two authors contributed equally to this work
†Corresponding author

of dTPS. In each pruning stage, the dTPS module employs
the gumbel-softmax [3] to sample binary decision mask ran-
domly during training and maintain the presently reserved
mask and pruned mask to avoid previously pruned tokens
from participating in the matching and fusing step. In the
subsequent attention layer, the attention masking strategy
from dynamicViT [7] is employed to erase the effects of
dropped tokens. The implementation details can be found
in the code file.

Position to insert. As mentioned in the paper, dTPS and
eTPS cut down tokens in inter-block and intra-block ways,
respectively. The dTPS module is inserted before the trans-
former block, while the eTPS module is inserted after the
multi-head attention layer. The distinction derives from the
different token scoring methods. The learnable score pre-
diction employed by dynamicViT and dTPS does not rely
on any internal operation of transformer blocks, while the
scoring based on the class-token attentions requires the re-
sults from the multi-head attention block.

Parameters. The eTPS module is parameter-free, while
the dTPS module increases the total number of parameters
by a small amount due to its learnable token score predic-
tion head.

Performances. The performances of dTPS and eTPS
modules are close but can be slightly different when training
epochs changes. According to our experiments, the eTPS
module outperforms the dTPS module under 30 epochs.
The opposite results were observed under 100 epochs. The
difference demonstrates that extra parameters of dTPS mod-
ules endow the model with a higher upper limit.

4. TPS on Hybrid ViTs

We conduct experiments on PVT [10] and CvT [11] to
prove our design is compatible with hybrid ViTs.

4.1. PVT

Generally, We insert dTPS modules between the patch
embedding layer and the subsequent basic block of each
pruned stage. Unlike TPS on vanilla ViTs, we reserve atten-

1

(a) Comparison on DeiT-B. (b) Comparison on DeiT-S-384×384.

Figure 1. Note that dynamicViT can’t converge in the two most aggressive pruning settings in (b).

-RTYX�

H]REQMG:M8
TVIHMGXMSR

847
TVIHMGXMSR

WRS[�PISTEVH

PISTEVH�Ø

WRS[�PISTEVH��

PE[R�QS[IV

JSPHMRK�GLEMV�Ø

PE[R�QS[IV�

FEWIFEPP

VYKF]�FEPP�Ø

FEWIFEPP��

TMRIETTPI

SVERKI�Ø

TMRIETTPI��

EKEQE

EKEQE��

GSQQSR�MKYERE�Ø

GEWXPI

GEWXPI��

TEPEGI�Ø

-RTYX�

H]REQMG:M8
TVIHMGXMSR

847
TVIHMGXMSR

GSRZIVXMFPI

FIEGL�[EKSR�Ø

GSRZIVXMFPI��

TMXGLIV

[EXIV�NYK�Ø

TMXGLIV��

TSPMGI�ZER

EQFYPERGI�Ø

TSPMGI�ZER��

HIWOXST�GSQTYXIV

VEHMS�Ø

HIWXOXST�GSQTYXIV�

FSRRIX

FSRRIX��

FMF�Ø

FVIEO[EXIV

FVIEO[EXIV��

TMIV�Ø

Figure 2. Comparisons between dynamicViT [7] and our joint Token Pruning & Squeezing. The results are given by dynamicViT-DeiT-
small and our TPS-DeiT-small with the same pruning setup (pruning locations are {4th,7th,8th} and token keeping ratio of each pruning
stage ρ is 0.5). The cases of dynamicViT and our TPS are displayed based on practical operations of the first stage with pruning applied.
For dynamicViT, the blank tokens denote pruned ones; for our TPS, we mask each group of matched tokens in the TPS as the same color
for visualization clarity.

Matching Method Acc. (%)

N:1 71.90
1:1 69.02

(a) Different matching methods on dTPS-DeiT-T. The keep ratio is 0.7.

Fusing Method Policy Acc. (%)

Weighting Original 70.58
Random 65.56 (-5.02)

Average Original 70.47
Random 65.173 (-5.30)

(b) Robustness comparison of fusing methods on dTPS-DeiT-T. The
keep ratio is 0.5.

Table 1. The pruned layers includes 4th,7th,8th. (a) N:1 matching employed by TPS finds the nearest reserved token for each pruned token
to inject multiple tokens into the same token, while 1:1 matching finds the nearest pruned token for each reserved token. (b) The similarity-
weighting fusing obtains a lower accuracy drop under random token squeezing (see more details in the main paper: Sec. 4.3) than average
fusing.

tive tokens from the whole tokens set in each pruned stage
and utilize the masking or padding operations to maintain
the complete spatial structure during training and inference,
respectively.

Training. The spatial reduction layer of the basic block
in PVT requires input with a complete spatial structure. For
the basic block with a spatial reduction block, given the pol-
icy M , we maintain the complete spatial structure and mask
the dropped tokens in key K and in value V with zeros be-
fore the spatial reduction layer as follows:

SRA∗(Q,K, V) = MHA(Q,SR(K ⊙M), SR(V ⊙M)) (1)

Here, SRA∗ is the modified spatial reduction attention,
MHA is the multi-head attention operation, and SR is the
spatial reduction layer. Moreover, we perform the same
masking operation on dropped tokens before the patch em-
bedding layer of next stage.

For the basic block without a spatial reduction layer, no
masking operation is needed ,and we conduct the attention
masking strategy from dynamicViT [7] to erase the effects
of the dropped tokens.

Inference. The inference procedure of dTPS is adjusted
slightly to practically accelerate the spatial reduction layer.
The input tokens are pruned by a top-k selection operation
based on the scoring results. For the block with a spatial
reduction layer, we pad the previously dropped tokens with
zero in the SRA∗ to maintain the complete spatial structure.

K′ = Pad(K,M) (2)

V ′ = Pad(V,M) (3)

SRA∗(Q,K, V) = MHA(Q,SR(M ′), SR(V ′)) (4)

Also, the same padding operation is utilized before the
patch embedding layer of the next stage. For the block with-
out a spatial reduction layer, no padding operation is needed
either. The requirement of complete spatial structure leads
to less shrinkage of computations.

4.2. CvT

The last stage of CvT [11] contains most of its blocks;
therefore we only modify the last stage with our dTPS. The

operations remain the same for other stages as the original
CvT [11].

Training. The convolutional projection operation in
CvT requires the input with a complete spatial structure.
Given the policy M , we mask the dropped tokens with ze-
ros before the convolution projection:

Q,K, V = ConvolutionalProjection(X ⊙M) (5)

Inference. The input tokens are pruned by a top-k selec-
tion operation based on the scoring results. To maintain the
complete spatial structure, we pad the previously dropped
tokens with zeros in the convolutional projection layer.

X ′ = Pad(X,M) (6)

Q,K, V = ConvolutionalProjection(X ′) (7)

ATS [2] conducts experiments on CvT [11] as well. It
takes a variant of CvT [11] as the pre-trained model with-
out convolutional projection in stage 3. It only performs to-
ken pruning in stage 3 to avoid the extra operation to main-
tain the structured spatial input. Compared to ATS [2], our
method utilizes masking and padding during training and
inference to keep the spatial structure.

5. Detailed Experiment Settings

5.1. ImageNet-1K Classification

All experiments follow the same data augmentations
used in DeiT1 [8]. All the model is initialized with pre-
trained models’ weights and fine-tuned with different to-
ken pruning location and token keeping ratio. We adopt
the AdamW [6] as the optimizer and a cosine learning rate
scheduler.

TPS on DeiT [8]. The experiment settings of dTPS-
DeiT follows dynamicViT2 except for basic learning rate

1https://github.com/facebookresearch/DeiT
2https://github.com/raoyongming/DynamicViT

is set to batchsize
1024 × 2.5 × 10−4 and no stage of fix-

ing backbone weights. The experiment settings of eTPS-
DeiT follow EViT3. The pruning settings include combina-
tions of three multi-layer pruning settings: prune locs ∈
{[4, 7, 10], [3, 5, 7, 9], [4, 6, 8, 10]}, and two token keeping
ratios :ρ ∈ {0.5, 0.7}. The token keeping ratio remains the
same in all pruning stages.

TPS on LV-ViT [4]. The experiments of dTPS and
eTPS on LV-ViT [4] follow the same training settings of
dTPS and eTPS on DeiT, except for the basic learning rate
is set to batchsize

1024 × 1.0 × 10−4 for the stable conver-
gence. For LV-ViT-T, the pruning settings include combi-
nations of three multi-layer pruning settings: prune locs ∈
{[4, 7, 10], [3, 5, 7, 9], [4, 6, 8, 10]}, and two token keeping
ratios :ρ ∈ {0.5, 0.7}. For LV-ViT-S, the pruning set-
tings include combinations of three multi-layer pruning set-
tings: prune locs ∈ {[5, 9, 13], [3, 6, 9, 12], [4, 7, 10, 13]},
and two token keeping ratios :ρ ∈ {0.5, 0.7}.

TPS on PS-ViT [12]. The experiments of dTPS on PS-
ViT [12] follow the same training settings as ATS [2] on
PS-ViT [12]. The basic learning rate is set to batchsize

768 ×
5.0 × 10−4, prune locs is set to [3,6,9] and token keeping
ratio ρ is 0.5.

TPS on PVT [10]. The pruning stages include stage 2,
stage 3, and stage 4. The token keeping ratio for all dTPS
modules is set to 0.7. Basic learning rate is set to batchsize

1024 ×
2.5× 10−4.

TPS on CvT [11]. The basic learning rate is set to
batchsize

1024 × 5.0 × 10−5. The dTPS modules are only in-
serted into stage 3, and the pruning locations include [3,6,9]
for CvT-13,[5,9,13] for CvT-21. The token keeping ratio for
all TPS modules is set to 0.5.

5.2. iNaturalist 2019 Classification

TPS on DeiT [8]. For the experiment on iNaturalist
2019 Classification [9], we re-train DeiT and fine-tune the
model with dynamicViT or dTPS applied.

In the training step, we initialize DeiT [8] with weights
of ImagetNet1K pre-trained model and re-train them for
300 epochs. The basic learning rate is set to batchsize

1024 ×
10−3. The other settings follow DeiT [8].

In the fine-tuning step, we initialize dynamicViT-DeiT
and dTPS-DeiT with weights from the last step and fine-
tune them for 30 epochs with the same pruning setup. The
token pruning location is set to [4,7,10], and the token keep-
ing ratio is 0.5. We follow the same fine-tuning settings as
the experiments on ImageNet1K, except for no distillation
loss.

3https://github.com/youweiliang/evit

Figure 3. TPS under different keep ratios on DeiT-S.

6. TPS on Larger Models and with Larger In-
put Size

We conduct experiments of TPS on DeiT-B as shown in
Fig. 1a to demonstrate it is compatible with large models.
We also prove TPS can perform well with larger input size
such as 384× 384, as shown in Fig. 1b.

7. TPS under Different Keep Ratios
Experiments of TPS under different keep ratios are

shown in Fig. 3.

8. More Ablations About TPS Design
More matching & fusing methods are shown in Tab. 1

as ablations about our TPS design. Tab. 1a indicates that
TPS performance improvement benefits from compressing
pruned tokens’ information while unmatched reserved to-
kens remain unchanged. Token scoring can be proved nec-
essary for squeezing under random token division meets a
significant drop as shown in Tab. 1b and robustness analysis
in the main paper: Sec. 4.3.

References
[1] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 1

[2] Mohsen Fayyaz, Soroush Abbasi Koohpayegani, Farnoush
Rezaei, and Sommerlade1 Hamed Pirsiavash2 Juergen Gall.
Adaptive token sampling for efficient vision transformers. 3,
4

[3] Eric Jang, Shixiang Gu, and Ben Poole. Categorical
reparameterization with gumbel-softmax. arXiv preprint
arXiv:1611.01144, 2016. 1

[4] Zi-Hang Jiang, Qibin Hou, Li Yuan, Daquan Zhou, Yujun
Shi, Xiaojie Jin, Anran Wang, and Jiashi Feng. All tokens
matter: Token labeling for training better vision transform-
ers. Advances in Neural Information Processing Systems,
34:18590–18602, 2021. 4

[5] Youwei Liang, Chongjian Ge, Zhan Tong, Yibing Song,
Jue Wang, and Pengtao Xie. Not all patches are what you
need: Expediting vision transformers via token reorganiza-
tions. arXiv preprint arXiv:2202.07800, 2022. 1

[6] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 3

[7] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie
Zhou, and Cho-Jui Hsieh. Dynamicvit: Efficient vision
transformers with dynamic token sparsification. Advances
in neural information processing systems, 34:13937–13949,
2021. 1, 2, 3

[8] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In International Conference on Machine Learning,
pages 10347–10357. PMLR, 2021. 3, 4

[9] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui,
Chen Sun, Alex Shepard, Hartwig Adam, Pietro Perona,
and Serge Belongie. The inaturalist challenge 2019 dataset.
arXiv preprint arXiv:1707.06642, 2019. 4

[10] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.
Pyramid vision transformer: A versatile backbone for dense
prediction without convolutions. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 568–578, 2021. 1, 4

[11] Haiping Wu, Bin Xiao, Noel Codella, Mengchen Liu,
Xiyang Dai, Lu Yuan, and Lei Zhang. Cvt: Introducing
convolutions to vision transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 22–31, 2021. 1, 3, 4

[12] Xiaoyu Yue, Shuyang Sun, Zhanghui Kuang, Meng Wei,
Philip HS Torr, Wayne Zhang, and Dahua Lin. Vision trans-
former with progressive sampling. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 387–396, 2021. 4

