
Supplemental Material:
Super-Resolution Neural Operator

This document provides additional details and results.

A. Dynamic basis update
In this section, we provide a principled discussion on

the quasi-optimal property of the Galerkin-type attention
mechanism, which tells that in each attention layer, SRNO
can achieve the approximation capability that the Petrov-
Galerkin projection can offer. Although some theorems
have been proved in [1], we provide a systematic and com-
plete discussion on the dynamic basis update processes in
the query, test and value approximation spaces. The back-
ground knowledge about the Galerkin projection can be
found in [4]

Let gθ(·) : Rn×d → Qh, {zt : Dt → Rd} 7→ {zt+1 :
Dt+1 → Rd} be a learnable map that is the composition of
the Galerkin-type attention operator and the FFN O used in
SRNO, where Qh ⊂ H(Ωh) ⊂ H is the current value space
spanned by the column vectors of Q = zWq . Similarly,
we can define the approximation spaces Vh and Kh. Sup-
pose fh is the best approximation of image function f in
current value space Qh, i.e., fh = argminq∈Qh

∥f − q∥H,
and then the approximation error between gθ(·) and f can
be described as:

∥f − gθ(z)∥H ≤ ∥fh − gθ(z)∥H + ∥f − fh∥H. (1)

Let B(·, ·) : Vh × Qh → R be a continuous bilinear
form. Here we define, for (u, v) ∈ Qh × Vh, B(u, v) :=
h2

∑n
i=1 u(xi)v(yi). Under the settings of Galerkin-type

attention [1], for any given q ∈ Qh, we have

max
v∈Vh

|B(v, q)|
∥v∥H

≥ c∥q∥H, (2)

i.e., B is coercive on the current key space Vh with constant
c. (1) can be reformulated as

∥f−gθ(z)∥H ≤ c−1 max
v∈Vh

|B(v, fh − gθ(z))|
∥v∥H

+∥f−fh∥H.

(3)
Our purpose is to minimize (3) by optimizing the trainable
parameters θ,

min
θ

max
v∈Vh

|B(v, fh − gθ(z))|
∥v∥H

≤ min
q∈Qh

max
v∈Vh

|B(v, fh − q)|
∥v∥H

.

(4)

(3) and (4) show the approximation capacity of a Galerkin-
type attention used in SRNO as the kernel integral opera-
tor. In SRNO, we are actually optimizing the basis func-
tions of the current value space Qh to approximate the best
fh. By the Riesz representation theorem [3], there ex-
ists a value-to-key linear map Π : Qh → Vh such that
B(v, fh) = ⟨v,Πfh⟩. In order to reveal the interactions
among the bases of the three approximation spaces, we in-
troduce the second bilinear form A(·, ·) : Kh × Vh → R to
substitute the inner product ⟨v,Πfh⟩. In practice, the FFN
O, as a universal approximator in gθ, helps the bilinear form
A(·, ·) to approximate the inner product ⟨v,Πfh⟩. We thus
define the following problem to approximate the right hand
side of (4) (j = 1, . . . , d):

min
q∈Qh

max
v∈Vh

∥A(kj , v)−B(q, v)∥
∥v∥H

, (5)

which involves solving the following operator equation sys-
tem (finding zj ∈ Qh and w ∈ Vh):

⟨w, v⟩+B(v, zj) = A(kj , v), ∀v ∈ Vh,
B(w, q) = 0, ∀q ∈ Qh,

(6)

which is further equivalent to solve the following linear sys-
tem: (

M BT

B 0

)(
µ
λ

)
=

(
(V TK)j

0

)
, (7)

where Qh, Vh is formd by sets of basis {qj(·)}rj=1,
{vj(·)}dj=1, respectively. B ∈ Rr×d, M ∈ Rd×d, and
(V TK)j ∈ Rd×1. µ := µ(w) = (µv1(w), . . . , µvd(w))

T

is the vector representation for w(·) =
∑d
j=1 µvj (w)vj(·).

Similiar to λ for zj . It is straightforward to verify
that h2(V TK)ij = A(kj , vi), Bij = B(vj , qi), B =
h2(QU)TV,Mij = ⟨vi, vj⟩. And then we can get:

λ = (BM−1BT )−1BM−1(V TK)j , (8)

if rank(Q) = r ≤ rank(V ) = d, which is verified by our
experiments. We multiply a permutation matrix U ∈ Rd×d
to Q, such that QU ’s first r columns form the value vector
(qj(x1), . . . , qj(xn))

T as the bases {qj(·)}rj=1 of Qh. Then
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Figure 1. Dynamic basis update. The annotation t = k refers to the iterative layer number. We display four basis function evaluation
vectors (columns) of the matrices Q, K, and V , respectively, as well as the synthesized the latent representations z

we multiply the permuted basis matrix QU with
(
λ 0

)
∈

Rd, yielding

zj = h2(QU)W (V TK)j ,

W = Λ

(
B
0

)
M−1,

(9)

where Λ = diag((BM−1BT ), 0). The layer normalization
scheme for V,K is used to mimick the matrix W .

The dynamic basis update rule, minimizer to (5), can be
defined as:

zj(·) :=
d∑
l=1

A(k̃j , ṽl)ql(·), j = 1, . . . , d, (10)

where {k̃j}, {ṽl} are the column vectors of layer normnal-

ized matrices K̃, Ṽ .

The point-wise FFN O : Rdz → Rdz introduces non-
linearties on one hand, and the positions concatenated in
z enhance the bases on the other. In this way, the basis
functions not only approximate the functions in the current
value space, but also are being constantly enriched. Note
that, in practice, we swap the matrix K,V to make this pro-
cess closer to self-attention in [7]. In summary, our iterative
process consist of two step: 1) the linear attention Q(K̃T Ṽ )
minimizes the (5) in the current value space; 2) the point-
wise FFN O and position information for the latent repre-
sentation z enrich the basis functions. The dynamic basis
updating phenomenon is demonstrated in Fig.1. We ob-
serve that the basis function in the second layer appears to
be more structured than in the previous layer, which verifies
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the validity of our method.

B. Network Architecture

The Network architecture is shown in Fig.5. The input
LR image fhc

undergoes three phases to output the HR im-
age fhf

with the specified resolution: (a) Lifting the LR
pixel values a(x) on the set of coordinates x = {xi}

nhf

i=1

to a higher dimensional feature space by a CNN-based en-
coder Eψ , constructing the latent representation â(x), and
linearly transforming into the first layer’s input z0(x). (b)
kernel integrals composed of T layers of Galerkin-type at-
tention, and (c) finally project to the RGB space. As to
the feature encoder Eψ , we employ EDSR-baseline [6], or
RDN [8], both of which drop their upsampling layers, and
their output channel dimensions de = 64. We employ the

Sequential samplingRandom sampling

LR
HR

LR
HR

Figure 2. Random vs. Sequential sampling.

random coordinates sequential coordinates

Figure 3. Random v.s. sequential coordinates.

SRNO (-s) SRNO GT

Figure 4. Visual comparison on sampling methods. Test on ×4
scale. EDSR-baseline is used as the encoder.

multi-head attention scheme in [7] by dividing the queries,
keys and values into nheads parts with each of dimension
dz/nheads. In our implementation, dz = 256, nheads = 16,
yielding 16-dimensional output values. We only use two
iterations (T = 2) in the kernel integral operator, which al-
ready outperforms previous works, while keeping the run-
ning time advantage. Note that we utilize 1×1 convolutions
to replace all the linear layers in SRNO, since they have a
GPU-friendly data structure.

C. Random vs. Sequential sampling
For a single batch, we crop B patches of sizes {128r(i)×

128r(i)}Bi=1 from the HR training images (one per each).
The LR counterparts are downsampled using bicubic inter-
polation with the corresponding r(i). In order to keep the
consistent dimensions of the LR patches, sharing a com-
mon supervisory HR signal in a single batch, we sample
1282 HR pixels and calculate the corresponding fractional
coordinates on the coarse grid associated with r(i). Figure
2 shows two different ways to sample function values. Ex-
periments, in Tab.1, Tab.2 and Fig.4, verify that the random
sampling method achieves better performance than the se-
quential sampling. These results show that using random
sampling method can capture a more comprehensive rep-
resentation for an image function, which is attributed to the
fact that random coordinates, as demonstrated in Fig.3, con-
tain some extra and useful high-frequency information for
SR reconstruction.

D. Additional Results
We further compare our SRNO to LIIF, LTE on several

images in Fig.6. It can be ovserved from the zoom-in re-
gions that our SRNO consistently produces clearer and finer
details than others.
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Method In-distribution Out-of-distribution
×2 ×3 ×4 ×6 ×12 ×18 ×24 ×30

Bicubic 31.01 28.22 26.66 24.82 22.27 21.00 20.19 19.59
EDSR-baseline-LTE [5] 34.72 31.02 29.04 26.81 23.78 22.23 21.24 20.53
EDSR-baseline-SRNO 34.85 31.11 29.16 26.90 23.84 22.29 21.27 20.56

EDSR-baseline-SRNO (-s) 34.79 31.07 29.09 26.84 23.80 22.26 21.24 20.54

Table 1. Random vs. Sequential sampling of SRNO on DIV2K validation set (PSNR (dB)). The best performance are bolded. All
methods are trained with continuous random scales uniformly sampled in ×1–×4. -s refers to using sequential sampling when training.

Dataset Method In-distribution Out-of-distribution
×2 ×3 ×4 ×6 ×8

Set5
EDSR-baseline-LTE [5] 38.03 34.48 32.27 28.96 27.04
EDSR-baseline-SRNO 38.15 34.53 32.39 29.06 27.06

EDSR-baseline-SRNO (-s) 38.12 34.50 32.37 28.96 27.04

Set14
EDSR-baseline-LTE [5] 33.71 30.41 28.67 26.49 24.98
EDSR-baseline-SRNO 33.83 30.50 28.79 26.55 25.05

EDSR-baseline-SRNO (-s) 33.79 30.42 28.71 26.52 25.00

B100
EDSR-baseline-LTE [5] 32.22 29.15 27.63 25.87 24.83
EDSR-baseline-SRNO 32.28 29.20 27.68 25.91 24.88

EDSR-baseline-SRNO (-s) 32.25 29.18 27.65 25.90 24.85

Urban100
EDSR-baseline-LTE [5] 32.29 28.32 26.25 23.84 22.52
EDSR-baseline-SRNO 32.60 28.56 26.50 24.08 22.70

EDSR-baseline-SRNO (-s) 32.50 28.51 26.39 23.95 22.61

Table 2. Random vs. Sequential sampling of SRNO on benchmark datasets (PSNR (dB)). The best performances are in bold. All
methods are trained with continuous random scales uniformly sampled in ×1–×4. -s refers to using sequential sampling when training.
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Figure 5. Super-resolution neural operator (SRNO) architecture for continuous SR. Encoder Eψ’s structure is omited.
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Figure 6. Visual comparison on other zero-shot SR. The boxes in the first column indicate the areas that the close-ups on the right
display. All methods are trained with continuous random scales in ×1–×4. RDN is used as the encoder for all methods.
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