
Supplementary Material for
Towards Realistic Long-Tailed Semi-Supervised Learning:

Consistency Is All You Need

1. More Experimental Details

Our experiments are run on NVIDIA GeForce RTX
3090. In the implementation of the proposed method, we
use PyTorch 1.12.0 and Torchvision 0.13.0.
Datasets. In our experiments, we compare the proposed
algorithm ACR with existing state-of-the-art methods on
several datasets under various unlabeled data class distri-
butions, e.g., consistent, uniform, and reversed.

• CIFAR-10-LT and CIFAR-100-LT: There are 5000
and 500 samples in CIFAR-100 and CIFAR-100 orig-
inally, with the image size of 32×32. The entire CI-
FAR dataset can be downloaded from https://
www.cs.toronto.edu/kriz/cifar.html.
We need to manually construct the imbalanced dataset
according to N1, M1 (MC for reversed), and the im-
balance ratio as we describe in our paper. We calculate
the top-1 accuracy for measuring the performance of
each method.

• STL10-LT: STL-10 includes 5000 labeled samples
and 100k samples without labels initially, so ground-
truth labels of unlabeled data in STL-10 are unknown.
We train the model with a long-tailed labeled dataset
constructed artificially and the whole 100k unlabeled
data. The image size of each sample is 96×96, and
the dataset can be downloaded at https://cs.
stanford.edu/acoates/stl10/.

• ImageNet-127: ImageNet127 is a naturally long-
tailed dataset. The dataset can be downloaded
from https://image-net.org/download-
images. Following CoSSL [1], we use the image size
of 32 × 32 and 64 × 64 for training.

2. Pseudo-code for Our ACR Algorithm

Algorithm 1 summarizes the whole framework of the
proposed ACR. We also include the source code for ACR
in the supplementary.

Algorithm 1 Adaptive Consistency Regularizer (ACR)

Input: labeled dataset Dl and unlabeled dataset Du,
standard classifier f and balanced classifier f̃ , class prior
of labeled dataset π, estimated unlabeled dataset class
distribution πest, number of iterations in each epoch K,
scaling parameter τ , three anchor distributions.
Require: Strong augmentations A.
Calculate the distance between πest and three anchor dis-
tributions and obtain the adaptive τ(t) according to Equa-
tion (7)
for k = 1 to K do
{(x(l)

i , y
(l)
i )}B−1

i=0 ← Sample a batch of labeled data
{x(u)

j }
B−1
j=0 ← Sample a batch of unlabeled data

q(x
(u)
j )← argmax f

(
x
(u)
j

)
− τ(t) · log π

q̃(x
(u)
j )← argmax f

(
x
(u)
j

)
− τ · log π

Update estimated class distribution πest according to
pseudo-labels f̃(x(u)

j )

Generate sample masks M and M̃ for standard and
balanced branch respectively based on Equation (8)
Llabeled ←

∑B−1
i=0 ℓ(f(x

(l)
i ), y

(l)
i )

Lb-labeled ←
∑B−1

i=0 ℓ(f̃(x
(l)
i ), y

(l)
i )

Lcon ←
∑B−1

j=0 M(x
(u)
j )ℓ

(
f(A(x(u)

j )), q(x
(u)
j )

)
Lb-con ←

∑B−1
j=0 M̃(x

(u)
j )ℓ

(
f̃(A(x(u)

j )), q̃(x
(u)
j )

)
Ltotal = Llabeled + Lcon + Lb-labeled + Lb-con
Updatef and f̃ based on ∇Ltotal using SGD

end for

3. Additional Experimental Results
In this section, we report more results to show the effec-

tiveness of ACR and detailed analysis to help better under-
stand the approach.
More results compared with DASO. To further illustrate
the superior performance of our method in the case of uni-
form and reversed class distributions of unlabeled dataset,
we combine our ACR with DASO w/ LA and DASO w/
ABC on three datasets. The results are reported in Ta-
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CIFAR10-LT(γl ̸= γu) STL10-LT(γu = N/A)

γu = 1(uniform) γu = 1/100(reversed) γl = 10 γl = 20

Algorithm
N1 = 500
M1 = 4000

N1 = 1500
M1 = 3000

N1 = 500
M1 = 4000

N1 = 1500
M1 = 3000

N1 = 150
M1 = 100k

N1 = 450
M1 = 100k

N1 = 150
M1 = 100k

N1 = 450
M1 = 100k

FixMatch [5]
w/ DASO [4]
w/ LA [3]+DASO
w/ ABC [2]+DASO
w/ ACR (ours)

73.0±3.81
86.6±0.84
84.6±2.04
85.2±1.56
92.1±0.18

81.5±1.15
88.8±0.59
86.8±0.76
88.4±0.82
93.5±0.11

62.5±0.94
71.0±0.95
72.6±0.38
70.1±1.25
85.0±0.09

71.8±1.70
80.3±0.65
78.5±1.31
79.8±0.21
89.5±0.17

56.1±2.32
70.0±1.19
72.7±1.45
71.8±1.17
77.1±0.24

72.4±0.71
78.4±0.80
79.7±0.44
78.4±0.58
83.0±0.32

47.6±4.87
65.7±1.78
66.8±0.62
67.3±2.06
75.1±0.70

64.0±2.27
75.3±0.44
75.8±0.50
75.9±0.43
81.5±0.25

Table 1. Test accuracy of DASO combined with LA or ABC and our proposed ACR under uniform and reversed class distributions, i.e.,
γl ̸= γu, on CIFAR10-LT and STL10-LT datasets. The γl is fixed to 100 for CIFAR10-LT, while it is set to 10 and 20 for STL10-LT
dataset. The best results are in bold.

CIFAR100-LT(γl ̸= γu)

γu = 1(uniform) γu = 1/10(reversed)

Algorithm
N1 = 50
M1 = 400

N1 = 150
M1 = 300

N1 = 50
M1 = 400

N1 = 150
M1 = 300

FixMatch [5]
w/ DASO [4]
w/ LA [3]+DASO
w/ ABC [2]+DASO
w/ ACR (ours)

45.5±0.71
53.9±0.66
54.7±0.40
53.4±0.53
66.0±0.25

58.1±0.72
61.8±0.98
62.4±1.06
62.4±0.61
73.4±0.22

44.2±0.43
51.0±0.19
51.1±0.12
51.2±0.19
57.0±0.46

57.3±0.19
60.0±0.31
60.5±0.23
60.8±0.39
67.6±0.12

Table 2. Test accuracy on CIFAR100-LT dataset under uniform
and reversed class distributions. DASO combines LA and ABC to
enhance its re-balancing ability. The best results are in bold.

ble 1 and Table 2. As we can see, ACR significantly out-
performs competing methods with an average 7.9% perfor-
mance gain, indicating the strong performance of ACR.
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Figure 1. (1a): More realistic LTSSL settings on CIFAR100-LT.
(1b): The adaptive τ values when training CIFAR100-LT.

More settings on CIFAR100-LT. We evaluate our pro-
posed algorithm ACR under more types of class distribu-
tions of unlabeled data on CIFAR100-LT dataset. The re-
sult is illustrated in Figure 1a. In this experiment, we fix
γl = 20 and vary γu from consistent to reversed by a step
size of 5. We set N1 = 50 and M1 = 400 (MC = 400
for reversed), and compare the performance with DASO w/
LA. It can be seen that ACR outperforms DASO w/ LA
in all settings, showing the superior performance of ACR
when dealing with various unlabeled class distributions.
Adaptive τ values on CIFAR100-LT. We investigate the

adaptive change of τ values on CIFAR100-LT dataset in
Figure 1b. We can see that the scaling parameter τ increases
its value from consistent to reversed settings, which coin-
cides with observation on CIFAR10-LT illustrated in the
main paper.
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(a) DASO for uniform
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(b) ACR for uniform
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(c) DASO for reversed
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(d) ACR for reversed

Figure 2. The confusion matrices of the test set for DASO and
ACR on CIFAR-10-LT dataset in uniform and reversed settings.

Confusion matrices on test set. We compare ACR and
DASO [4] under uniform and reversed unlabeled data class
distributions by calculating their confusion matrices in Fig-
ure 2. We have two key observations: 1) ACR achieves
higher overall accuracy for classes and 2) ACR signifi-
cantly improves the minority class accuracy. On the con-
trary, DASO produces biased predictions toward the major-
ity class.
Precision and Recall of pseudo-labels. In this experiment,
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(a) DASO w/ LA for uniform
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(b) ACR for uniform
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(c) DASO w/ LA for reversed
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(d) ACR for reversed

Figure 3. The precision and recall of pseudo-labels for DASO and
ACR on CIFAR-10-LT dataset in uniform and reversed settings.

we investigate the quality of pseudo-labels generated by our
method. The results are illustrated in Figure 3. Interest-
ingly, ACR produces pseudo-labels of high quality in both
uniform and reversed settings. As we can see, ACR signif-
icantly improves the precision and recall of pseudo-labels
compared with DASO w/ LA, showing the effectiveness of
the proposed adaptive logit adjustment.
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Figure 4. Accuracy on CIFAR10-LT of various imbalance ratios.

What if the target distribution is more imbalanced? We
fix the labeled data imbalance ratio as γl = 100 and design
the unlabeled data to be more class-imbalanced. Results in
Figure 4 indicate that our method (ACR) consistently out-
performs DASO by large margins, showing its capability to
generalize to various target distributions.
Fine-grained results. Here, we report the fine-grained ac-
curacy on the test set in Table 3. ACR achieves impres-
sive improvements on few-shot classes compared with pre-
vious state-of-the-art method (DASO) at the cost of negli-
gible drop under the consistent setting. For other settings,
ACR outperforms DASO in all cases, indicating its strong
generalization ability for both head and tail classes.

Setup
Consistent (γu = 100) Uniform (γu = 1) Reversed (γu = 1/100)

Many Medium Few All Many Medium Few All Many Medium Few All

DASO
Ours

95.1
93.9

78.6
81.6

60.4
75.3

78.1
83.4

89.6
92.8

84.4
90.6

85.7
97.9

86.3
93.5

84.0
90.7

71.6
83.8

68.2
96.4

74.3
89.7

Table 3. Fine-grained accuracy on CIFAR10-LT (γl = 100).

Effect of the class imbalance ratio and the amount of
labeled data. We illustrate the performance by varying
the imbalance ratio and amount of labeled data in Figure 4
and Table 4, respectively. ACR outperforms DASO in all
cases even under very high class imbalance ratios. Also,
more results can be found in Figure 3 (main paper) and Fig-
ure 1a. Concerning the amount of labeled data, ACR im-
proves DASO by an average 4.7% test accuracy.

Dataset CIFAR10-LT CIFAR100-LT

|Dl| 0.5× 0.75× 1× 0.5× 0.75× 1×

DASO
Ours

66.6
73.9

77.3
80.3

79.1
84.1

48.3
51.3

56.7
60.3

59.2
65.6

Table 4. Accuracy on two datasets with various amount of labeled
data (e.g., 0.5× means a half of the initial labeled data is used).

Self-supervised pre-training baseline. Following [6], we
train SimCLR using all data and fine-tune the model on the
labeled set. We find that its performance is even worse than
FixMatch (8.8% accuracy drop). This is because the limited
labeled data is not enough for model fine-tuning. Moreover,
by generating high-quality pseudo-labels, methods based
on FixMatch leverage unlabeled data more effectively than
self-supervised learning.

Dataset CIFAR10-LT CIFAR100-LT

γu 100 1 1/100 10 1 1/10

SSP
FixMatch

64.9
77.5

70.6
81.5

68.7
71.8

48.4
56.5

49.6
58.1

47.9
57.3

Table 5. Performance comparison between SSP and FixMatch.
The labeled imbalance ratio γl is fixed 10 and 100 for CIFAR10-
LT and CIFAR100-LT, respectively
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