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Table 1. Ablation study on combination ratio of two kinds of
datasets with the same number of samples. Models are pre-trained
on YFCC-14M (YFCC) and ImageNet21K (IN-21k), and eval-
uated on zero-shot classification on IN-1K and zero-shot cross-
modal retrieval on MS-COCO. We sample 50% images from both
datasets in our mainscript as default.

# Training Data Method IN-1K COCO-IR COCO-TR

1 100% YFCC + 0% IN-21k CLIP 30.1 12.5 21.2
2 90% YFCC + 10% IN-21k iCLIP 40.9 13.9 25.5
3 75% YFCC + 25% IN-21k iCLIP 43.9 15.2 27.5
4 50% YFCC + 50% IN-21k iCLIP 45.9 15.5 27.2
5 25% YFCC + 75% IN-21k iCLIP 44.8 14.1 27.1
6 10% YFCC + 90% IN-21k iCLIP 44.2 14.9 25.9

A. Dataset size ratio between classification and
contrastive learning.

We conducted an ablation study for the effect of dataset
size ratio on YFCC-14M and IN-21k datasets. The results,
shown in the Tab. 1, indicate that our framework performs
well with a broad range of data ratio configurations (10%-
90%). The best performance is achieved when the sampling
ratio is 50%:50%, indicating a sweet spot.

B. Comparison with UniCL [11] on multi-
modal retrieval

In Tab. 3 of the main manuscript, we have compared
iCLIP with UniCL on IN-1K and 14 datasets zero-shot clas-
sification. Here, we include results on zero-shot multi-
modal retrieval in Tab. 2, using Flickr30K [12] (1K test set)
and MSCOCO [6] (5K test set). Our method performs also
better than UniCL on cross-modal retrieval benchmarks,
since that the dictionary enhancement class names close the
label granularity gap between the original class names (one
or few words) and the alt-texts (complete sentences).

C. Setups for fine-tuning on down-stream tasks
For semantic segmentation, we conduct the experiment

on ADE20K [13] dataset and report single scale mIoU on
validation set. We utilize MaskFormer [1] as our base
framework and adopt its default training recipe except for
setting window size to 7. For object detection, we fine-tune
the models on LVIS v1 [2] with Faster R-CNN [10], follow-
ing the settings in Swin [7]. LVIS includes 1203 categories
with an unbalanced distribution. We report single scale val-
idation mAP box on all categories and rare categories, re-
spectively, under 2x schedule (24 epochs) with multi-scale
training (shorter size between 480 and 800). We also eval-
uate on the video action recognition task on Kinetics-400
(K400) [4] dataset for 30 epochs, following the same recipe
in Video Swin Transformer [8]. Top-1 accuracy is reported.

D. Detailed results on zero-shot classification
We compare iCLIP with CLIP [9] and OpenCLIP [3] on

Kornblith 12-dataset benchmark [5] in the main body. Ta-
ble 3 presents the detailed results on each dataset.
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Table 2. Comparison with UniCL. Models are pre-trained from scratched with 32 epochs, following UniCL [11]. ‡ denotes for our
reproduction. COCO and Flickr stands for MSCOCO [6] and Flickr30K [12]. IR and TR stands for image retrieval and text retrieval,
and top-1 recall is reported. Models with the datasets of YFCC-14M and IN-22K are excluded, because the UniCL model is not publicly
available.

# Training Data Method Flickr30K-IR Flickr30K-TR MSCOCO-IR MSCOCO-TR

1 YFCC-14M + IN-21K (half) UniCL [11] 21.5‡ 37.9‡ 12.5‡ 21.2‡

2 YFCC-14M + IN-21K (half) iCLIP 31.9 49.8 15.5 27.2

3 YFCC-14M + IN-21K UniCL [11] 34.0‡ 50.3‡ 17.7‡ 28.0‡

4 YFCC-14M + IN-21K iCLIP 37.1 55.7 18.5 30.7

Table 3. Detailed comparisons of zero-shot classification with CLIP and OpenCLIP on Kornblith 12-dataset classification benchmark [5].
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OpenCLIP-ViT-B/16 [3] 86.1 91.7 71.4 50.2 69.4 83.7 17.7 82.9 50.8 89.3 91.7 66.6 70.9

iCLIP 82.7 94.8 78.4 48.5 62.9 63.1 8.4 84.5 62.9 87.9 92.1 81.3 70.6

Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-
man action video dataset. arXiv preprint arXiv:1705.06950,
2017. 1

[5] Simon Kornblith, Jonathon Shlens, and Quoc V. Le. Do bet-
ter imagenet models transfer better? In 2019 IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2656–2666, 2019. 1, 2

[6] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European conference on computer vision, pages 740–755.
Springer, 2014. 1, 2

[7] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei,
Zheng Zhang, Stephen Lin, and Baining Guo. Swin trans-
former: Hierarchical vision transformer using shifted win-
dows. pages 10012–10022, 2021. 1

[8] Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang,
Stephen Lin, and Han Hu. Video swin transformer. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 3202–3211, 2022. 1

[9] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In International Conference on Machine Learning,
pages 8748–8763. PMLR, 2021. 1, 2

[10] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster r-cnn: Towards real-time object detection with region
proposal networks. In Advances in neural information pro-
cessing systems, pages 91–99, 2015. 1

[11] Jianwei Yang, Chunyuan Li, Pengchuan Zhang, Bin Xiao, Ce
Liu, Lu Yuan, and Jianfeng Gao. Unified contrastive learning

in image-text-label space. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 19163–19173, June 2022. 1, 2

[12] Peter Young, Alice Lai, Micah Hodosh, and Julia Hocken-
maier. From image descriptions to visual denotations: New
similarity metrics for semantic inference over event descrip-
tions. Transactions of the Association for Computational
Linguistics, 2:67–78, 2014. 1, 2

[13] Bolei Zhou, Hang Zhao, Xavier Puig, Tete Xiao, Sanja Fi-
dler, Adela Barriuso, and Antonio Torralba. Semantic under-
standing of scenes through the ade20k dataset. International
Journal on Computer Vision, 2018. 1


	. Dataset size ratio between classification and contrastive learning.
	. Comparison with UniCL unicl on multi-modal retrieval
	. Setups for fine-tuning on down-stream tasks
	. Detailed results on zero-shot classification

