
Supplemental Material:
Neural 6-DoF Tracking and 3D Reconstruction of Unknown Objects

1. Implementation Details
During coarse pose initialization, if there is no immedi-

ate previous frame to compare with (e.g., missing detection
by the segmentation, or object reappearing after complete
occlusion), the current frame will instead be compared with
the memory frames. The memory frame which has more
than 10 feature correspondences with the current frame is
selected as the new reference frame for the coarse pose ini-
tialization. The following steps remain the same.

For online pose graph optimization, we constrain the
maximum number of participating memory frames K = 10
for efficiency. When computing Lp we reject corresponding
points whose distance is larger than 1 cm, or their normal
angle is larger than 20◦. The Gauss-Newton optimization
iterates for 7 steps.

For Neural Object Field learning, we normalize the ob-
ject into the neural volume bound of [−1, 1], where the scale
is computed as 1.5 times of the initial frame’s point cloud
dimension. The neural volume’s coordinate system is based
on the first frame’s centered point cloud. The geometry net-
work Ω consists of two-layer MLP with hidden dimension
64 and ReLU activation except for the last layer. The in-
termediate geometric feature fΩ(·) has dimension 16. The
bias of the last layer is initialized to 0.1 for a small pos-
itive SDF prediction at the start of training. The appear-
ance network Φ consists of three-layer MLP with hidden
dimension 64 and ReLU activation except for the last layer,
where we apply sigmoid activation to map the color pre-
diction to [0, 1]. For Octree ray-tracing, the finest voxel
size is set to 2 cm. We simplify the multi-resolution hash
encoder [39] to 4 levels, with number of feature vectors
from 16 to 128 for efficiency. Each level’s feature dimen-
sion is set to 2. The hash table size is set to 222. In
each iteration the ray batch size is 2048. For hierarchical
point sampling, N and N ′ are set to 128 and 64, respec-
tively. The truncation distance λ is set to 1 cm. For un-
certain free space, ϵ is set to 0.001. In the training loss,
wu = 100, we = 1, wsurf = 1000, wc = 100, weik = 0.1.
We implement in PyTorch [46] with Adam optimizer. The
initial learning rate is 0.01 with linear decay rate 0.1. The
Neural Object Field training runs in a separate thread con-
currently and interchanges data with the memory pool peri-

odically after each training convergence (300 steps), which
leads to sufficient pose refinement. The first training period
starts when there are 10 memory frames in the pool. Upon
training convergence, it returns the data to the memory pool
and grabs memory frames newly added to the pool during its
last training period, to repeat the training process. The next
training reuses the latest updated frames’ poses. But for
the other trainable parameters, reusing their weights tend to
get stuck in local minima if there is any sub-optimum in
the previous training period, particularly due to noisy pose.
Therefore, we re-initialize the network weights for the new
training periods. This takes similar number of steps to re-
fine the newly added memory frames’ poses, compared to
reusing the previous network weights.

2. Computation Time

All experiments were conducted on a standard desktop
with Intel i9-10980XE CPU and a single NVIDIA RTX
3090 GPU. Our method consists of two threads running
concurrently. The online tracking thread processes frames
at around 10.2 Hz, where video segmentation takes 18 ms,
coarse matching takes 24 ms, pose graph takes 56 ms on
average. Concurrently, the neural object field thread runs
in the background and takes 6.7 s averagely for each train-
ing round, at the end of which it exchanges data with the
main thread. On the same hardware, competitive methods
DROID-SLAM [61] and BundleTrack [69] run at 6.1 Hz
and 11.2 Hz respectively.

3. Metrics

For evaluation, we decouple the pose estimation and
shape reconstruction, so that they can be treated separately.
For 6-DoF object pose evaluation, we compute the area un-
der the curve (AUC) percentage of ADD and ADD-S metric:
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where M is the object model. Since the novel unknown
object’s CAD model is inaccessible to the methods to define
the coordinate system, we use the ground-truth pose in the
first image to define the canonical coordinate frame of each
video to evaluate the pose.

For 3D shape reconstruction evaluation, we report the
results of chamfer distance between the final reconstructed
mesh and the ground-truth mesh, using the following sym-
metric formulation:
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In our method, the mesh can be extracted by applying
Marching Cubes over the zero level set in the Neural Ob-
ject Field. For all methods, we use the same resolution
(5 mm) to sample points for evaluation. Since most videos
do not cover the complete surrounding view of the object,
we cull the ground-truth mesh faces that are never visible
in the video by a rendering test, given by the ground-truth
mesh and pose.

4. Detailed Results
Recall curves for ADD-S and ADD for all three datasets

are presented in Fig. 1 (HO3D), Fig. 2 (YCBInEOAT), and
Fig. 3 (BEHAVE). Each plot shows the results for all videos
of the respective dataset. As can be seen, the area-under-
the-curve (AUC) for our method exceeds that of other meth-
ods for almost all datasets.

Per-video quantitative results for all three datasets are
presented in Tab. 1 (HO3D), Tab. 2 (YCBInEOAT), and
Tabs. 3-6 (BEHAVE). As can be seen, our method per-
forms best on almost all videos of HO3D, more than half
the videos of YCBInEOAT, and a large majority of videos
of BEHAVE. Note that the last row of each table (“Mean”)
is included in the main paper.

Qualitative results are demonstrated in Figs. 4 and 5
(HO3D), Fig. 6 (YCBInEOAT), and Figs. 7 and 8 (BE-
HAVE). We encourage the reader to watch the supplemental
video.

Details Regarding the Single-View Setup of BEHAVE.
As mentioned in the paper, the BEHAVE Dataset was cap-
tured by a pre-calibrated multi-camera system with four
cameras. Since our method only requires a monocular in-
put, for fair evaluation, we run all methods on a single
monocular input. That is, for each scene, we input only
one of the cameras’ captured video to the methods.

Although in theory we could run each method four times,
once per video camera, this would be excessively time con-
suming for the little insight that it might bring. More-
over, since there are only four cameras placed at each cor-

ner around the scene, it is often the case that the object is
severely occluded by the human in several cameras’ views
(including at the beginning of the video). Using such cam-
eras would not lead to meaningful results for tracking eval-
uation, due to the very limited object visibility at initializa-
tion.

Instead, we decided to automatically select one of the
four cameras from each scene for evaluation. More specif-
ically, we select the video with the least amount of occlu-
sion in each scene over the entire sequence. To do so, we
compute the average visibility ratio of the object in each
camera’s video by comparing the ground-truth object mask
against the rendered object mask using the ground-truth in-
formation. This is performed offline for all videos before
evaluation. The selected single-view video is then used by
all methods for evaluation, even though severe occlusions
still occur frequently which exhibit challenges, as shown in
Fig. 7, 8.

5. Robustness Analysis
In the following we discuss our approach’s robustness

under various challenges. We encourage the reader to watch
our supplemental video for more complete appreciation of
the system.

Dearth of Texture or Geometric Cues. In the case of dy-
namic object-centric setting, dearth of texture or geomet-
ric cues frequently occur given by the object itself. For in-
stance, in Fig. 4, large areas on the blue pitcher lack texture,
which challenge those methods heavily relying on optical
flow (DROID-SLAM [61]), or keypoint matching (Bundle-
Track [69]), or photometric loss (NICE-SLAM [85]). Ad-
ditionally, large areas of cylindrical surface also exhibit few
geometric cues to leverage and can cause rotational ambi-
guity to those methods relying on point-to-surface matching
(SDF2SDF [53], BundleTrack [69], KinectFusion [43]). In
contrast, our method is robust to these challenges due to
the synergy of pose graph optimization and Neural Object
Field. More examples of such challenges can be found in
Fig. 5, 7, 8.

Occlusions. In the dynamic object setting, occlusions in-
clude self-occlusions and external occlusions introduced
by the interaction agent (e.g., human hand, human body,
robotic arm). For instance, in Fig. 5, there are mo-
ments when the “meat can” only exhibits a single flat face
(2nd column) after extreme rotations, causing severe self-
occlusion. In other observations, external occlusion intro-
duced by the human hand (4th column) also challenges the
comparison methods. More examples of such challenges
can be found in Fig. 4, 7, 8, 6. As can be observed, our
method is robust to either case and keeps tracking accu-
rately throughout the video thanks to the memory mecha-
nism, whereas the comparison methods struggle.



Specularity. Due to the object’s surface smoothness, mate-
rial and complex environmental lighting, specularity could
happen, introducing challenges for those methods heavily
replying on optical flow (DROID-SLAM [61]), keypoint
matching (BundleTrack [69]) or photometric loss (NICE-
SLAM [85]). As shown in Fig. 4, 5, 7, 6, despite the spec-
ularity on metalic or highly smooth surfaces, our method
keeps tracking accurately throughout the video, whereas the
comparison methods become brittle.

Abrupt Motion and Motion Blur. Fig. 9 illustrates an
example of abrupt object motion due to the human freely
swinging the box. Aside from challenges for 6-DoF pose
tracking under large displacement, it causes motion blur in
RGB, leading to additional challenge for keypoint matching
and Neural Object Field learning. However, our method has
shown robustness under these adverse conditions and even
yields more accurate pose than ground-truth.

Noisy Segmentation. Figs. 10 and 11 demonstrate exam-
ples of noisy masks (purple) from the video segmentation
network, including both false positive and false negative
predictions. The false negative segmentation leads to ig-
norance of the texture-rich areas, intensifying the issue of
dearth of texture. The false positive segmentation intro-
duces deformable part from the interaction agent or un-
desired scene background, causing inconsistency in multi-
view. However, our downstream modules are robust to the
segmentation noise and maintain accurate tracking.

Noisy Depth. As shown in Fig. 12, in our setting, the noisy
depth comes from two sources. First, the consumer-level
RGBD camera has observable sensing noise. This is es-
pecially the case for BEHAVE [4] and YCBInEOAT [72]
Dataset, where the images are captured at a distance from
the camera, which challenges depth sensing. Second, due
to the noisy segmentation, false positive predictions include
undesired background areas in the depth point cloud. In
Fig. 12 (left), when naively fusing the per-frame depth point
cloud using ground-truth pose, the result is highly cluttered,
which implies the noisy depth sensing and segmentation.
However, despite such noise, our simultaneous pose track-
ing and reconstruction produce high quality mesh, as shown
on the right.

6. Limitation and Failure Modes

While our method is robust to a variety of challenging
conditions, it fails when multiple types of challenges appear
together. For instance, in Fig. 13, the occurrence of severe
occlusion, segmentation error, dearth of texture and geo-
metric cues together lead to tracking failure. When the ob-
ject re-appears, the recovered pose is affected by symmet-
ric geometry. Besides, our method requires depth modality
which limits its application to certain types of objects where

depth sensing fails, such as transparent objects. Finally, our
method assumes the object to be rigid. In future work, gen-
eralizing to both rigid and non-rigid objects at the same time
would be of interest.
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Figure 1. Recall curve of ADD-S (left) and ADD (right) metric including all videos on HO3D Dataset.

ADD‐S ADD

Figure 2. Recall curve of ADD-S (left) and ADD (right) metric including all videos on YCBInEOAT Dataset.

ADD‐S ADD

Figure 3. Recall curve of ADD-S (left) and ADD (right) metric including all videos on BEHAVE Dataset.



Video Metric DROID-SLAM [61] BundleTrack [69] KinectFusion [43] NICE-SLAM [85] SDF-2-SDF [53] Ours

AP10
ADD-S (%) ↑ 89.36 91.68 11.39 14.11 33.54 96.10
ADD (%) ↑ 50.06 36.60 9.99 2.62 16.35 91.00
CD (cm) ↓ 2.48 1.88 4.18 33.22 12.01 0.47

AP11
ADD-S (%) ↑ 68.76 91.45 76.34 11.40 21.21 96.18
ADD (%) ↑ 26.24 41.28 30.99 3.62 7.65 91.76
CD (cm) ↓ 120.91 129.18 21.65 90.13 16.79 0.56

AP12
ADD-S (%) ↑ 38.71 90.79 20.52 19.90 19.48 97.06
ADD (%) ↑ 7.15 50.82 9.13 4.11 2.78 94.76
CD (cm) ↓ 10.43 2.47 17.18 52.11 8.66 0.59

AP13
ADD-S (%) ↑ 91.68 90.68 11.40 32.45 49.90 96.16
ADD (%) ↑ 73.67 49.03 9.46 6.11 18.16 92.73
CD (cm) ↓ 3.00 2.77 19.76 37.62 12.22 0.63

AP14
ADD-S (%) ↑ 35.53 96.02 18.43 5.98 45.56 96.01
ADD (%) ↑ 0.06 90.30 15.81 0.34 32.54 91.25
CD (cm) ↓ 71.68 72.40 20.92 31.91 4.38 1.28

MPM10
ADD-S (%) ↑ 0.33 94.94 12.82 29.20 41.85 95.05
ADD (%) ↑ 0.27 87.45 9.37 7.17 15.23 88.92
CD (cm) ↓ 1.38 0.97 16.81 54.71 5.86 0.56

MPM11
ADD-S (%) ↑ 59.68 89.94 13.10 5.34 13.06 96.20
ADD (%) ↑ 20.32 53.20 9.74 3.55 6.15 91.51
CD (cm) ↓ 87.41 88.97 15.72 66.32 6.82 0.49

MPM12
ADD-S (%) ↑ 84.43 95.66 12.59 3.99 26.08 96.98
ADD (%) ↑ 53.29 90.96 6.70 0.35 8.48 93.13
CD (cm) ↓ 1.70 121.33 15.92 51.38 10.24 0.46

MPM13
ADD-S (%) ↑ 75.30 89.42 10.58 14.34 40.95 95.80
ADD (%) ↑ 22.61 38.78 7.27 6.67 9.49 90.62
CD (cm) ↓ 3.27 81.39 18.41 72.50 6.05 0.57

MPM14
ADD-S (%) ↑ 73.46 95.49 26.70 76.36 46.19 97.33
ADD (%) ↑ 26.12 90.16 11.05 26.94 20.57 94.52
CD (cm) ↓ 6.50 94.99 12.52 52.84 6.18 0.47

SB11
ADD-S (%) ↑ 63.39 94.44 58.72 30.06 9.67 97.27
ADD (%) ↑ 32.15 84.64 55.25 23.72 5.93 94.39
CD (cm) ↓ 84.72 75.83 3.01 81.73 20.19 0.46

SB13
ADD-S (%) ↑ 91.88 95.66 32.15 36.05 47.73 97.67
ADD (%) ↑ 76.44 85.47 30.89 26.74 32.50 95.24
CD (cm) ↓ 3.15 2.49 21.39 32.91 9.60 0.47

SM1
ADD-S (%) ↑ 67.86 84.94 30.88 10.65 71.19 96.90
ADD (%) ↑ 45.25 59.41 9.41 4.64 33.19 94.24
CD (cm) ↓ 4.21 2.04 13.95 26.05 6.39 0.44

Mean
ADD-S (%) ↑ 64.64 92.39 25.81 22.29 35.88 96.52
ADD (%) ↑ 33.36 66.01 16.54 8.97 16.08 92.62
CD (cm) ↓ 30.84 52.05 15.49 52.57 9.65 0.57

Table 1. Per-video comparison on HO3D Dataset. ADD and ADD-S are AUC (0 to 0.1 m) percentage for pose evaluation. CD is the chamfer distance for
shape reconstruction evaluation.



Object Metric MaskFusion* [50] TEASER++* [78] BundleTrack* [69] BundleTrack [69] DROID-SLAM [61] KinectFusion [43] NICE-SLAM [85] SDF-2-SDF [53] Ours

003_cracker_box
ADD-S (%) ↑ 88.28 81.35 89.41 90.20 27.25 56.04 54.23 19.89 90.63
ADD (%) ↑ 79.74 63.24 85.07 85.08 19.73 42.73 24.92 12.13 85.37
CD (cm) ↓ - - - 1.36 2.95 2.43 4.03 3.12 0.76

021_bleach_cleanser
ADD-S (%) ↑ 43.31 82.45 94.72 95.22 27.13 53.98 17.96 30.63 94.28
ADD (%) ↑ 29.83 61.83 89.34 89.34 12.83 40.94 9.55 14.21 87.46
CD (cm) ↓ - - - 1.31 2.43 1.99 9.40 3.87 0.53

004_sugar_box
ADD-S (%) ↑ 45.62 81.42 90.22 90.68 53.87 45.20 14.56 24.57 93.81
ADD (%) ↑ 36.18 51.91 85.56 85.49 43.38 30.53 8.70 14.87 88.62
CD (cm) ↓ - - - 2.25 2.41 2.56 7.75 1.70 0.46

005_tomato_soup_can
ADD-S (%) ↑ 6.45 71.61 95.13 95.24 0.08 60.52 17.08 24.76 95.24
ADD (%) ↑ 5.65 41.36 86.00 85.78 0.08 45.64 11.45 10.89 83.10
CD (cm) ↓ - - - 7.36 0.99 9.30 1.52 1.42 3.57

006_mustard_bottle
ADD-S (%) ↑ 13.11 88.53 95.35 95.84 42.29 17.88 8.77 44.51 95.75
ADD (%) ↑ 11.55 71.92 92.26 92.15 15.10 16.01 7.33 18.23 89.87
CD (cm) ↓ - - - 1.76 2.90 6.88 7.95 2.91 0.45

Mean
ADD-S (%) ↑ 41.88 81.17 92.53 93.01 32.12 46.39 23.41 28.20 93.77
ADD (%) ↑ 35.07 57.91 87.34 87.26 20.39 34.68 12.70 14.04 86.95
CD (cm) ↓ - - - 2.81 2.34 4.63 6.13 2.61 1.16

Table 2. Per-object comparison (following the same protocol as [69]) on YCBInEOAT Dataset. Results of MaskFusion* [50], TEASER++* [78] and
BundleTrack* [69] are copied from the leaderboard in [69]. For BundleTrack, we re-run the algorithm with the same segmentation masks as ours for
fair comparison, and we augment with TSDF Fusion [9, 83] for reconstruction evaluation. ADD and ADD-S are AUC (0 to 0.1 m) percentage for pose
evaluation. CD is the chamfer distance for shape reconstruction evaluation.



Video Metric DROID-SLAM [61] BundleTrack [69] KinectFusion [43] NICE-SLAM [85] SDF-2-SDF [53] Ours

Date03_Sub03_boxlarge.2
ADD-S (%) ↑ 72.59 52.88 21.09 7.05 24.78 92.63
ADD (%) ↑ 21.04 13.00 11.00 3.02 7.97 86.72
CD (cm) ↓ 8.61 11.61 8.80 24.79 41.97 1.46

Date03_Sub03_boxlong.3
ADD-S (%) ↑ 44.05 27.77 5.59 10.21 54.87 77.0
ADD (%) ↑ 14.06 20.31 1.83 1.58 13.75 32.58
CD (cm) ↓ 4.88 1.61 11.55 49.75 26.47 3.05

Date03_Sub03_boxmedium.2
ADD-S (%) ↑ 75.98 86.25 11.84 12.60 5.86 92.57
ADD (%) ↑ 39.16 50.04 4.26 3.11 3.10 85.24
CD (cm) ↓ 14.49 3.28 3.23 49.73 44.36 1.25

Date03_Sub03_boxsmall.3
ADD-S (%) ↑ 8.50 36.32 5.60 4.64 0.84 70.83
ADD (%) ↑ 5.40 20.93 4.09 2.84 0.78 51.64
CD (cm) ↓ 3.92 11.73 10.93 36.46 42.29 2.92

Date03_Sub03_boxtiny.3
ADD-S (%) ↑ 41.70 52.40 9.94 6.80 19.97 88.01
ADD (%) ↑ 22.44 39.34 7.64 4.35 6.49 74.24
CD (cm) ↓ 3.27 13.31 14.64 46.00 26.47 2.08

Date03_Sub03_chairblack_hand.3
ADD-S (%) ↑ 67.82 86.19 45.88 26.62 31.81 95.52
ADD (%) ↑ 10.89 70.83 6.86 3.26 0.66 90.28
CD (cm) ↓ 15.82 11.35 12.08 12.89 32.25 2.4

Date03_Sub03_chairblack_lift.1
ADD-S (%) ↑ 32.98 27.85 21.15 59.55 14.29 28.03
ADD (%) ↑ 11.96 15.61 9.90 10.70 4.68 11.43
CD (cm) ↓ 51.95 20.86 8.15 31.12 34.36 6.46

Date03_Sub03_chairblack_sit.3
ADD-S (%) ↑ 97.25 98.87 95.32 32.52 43.08 98.81
ADD (%) ↑ 94.49 98.06 91.39 13.08 16.75 97.95
CD (cm) ↓ 4.71 4.57 3.48 32.12 26.66 4.63

Date03_Sub03_chairblack_sitstand.3
ADD-S (%) ↑ 92.75 98.64 97.26 78.19 34.57 98.56
ADD (%) ↑ 86.31 97.73 95.24 55.40 14.49 97.64
CD (cm) ↓ 4.25 2.49 2.1 27.56 37.39 4.75

Date03_Sub03_chairwood_hand.3
ADD-S (%) ↑ 72.52 98.24 86.28 39.39 36.43 97.80
ADD (%) ↑ 34.60 96.03 56.04 9.64 10.83 94.75
CD (cm) ↓ 10.65 7.97 8.22 30.33 47.06 0.92

Date03_Sub03_chairwood_lift.3
ADD-S (%) ↑ 60.58 60.24 7.83 19.90 11.50 81.39
ADD (%) ↑ 19.99 35.33 4.61 2.38 2.73 48.19
CD (cm) ↓ 13.52 10.30 8.09 44.33 49.34 6.3

Date03_Sub03_chairwood_sit.2
ADD-S (%) ↑ 74.28 99.27 93.88 84.39 9.81 99.31
ADD (%) ↑ 52.26 98.92 85.09 68.02 8.78 99.01
CD (cm) ↓ 17.37 4.47 5.12 49.36 40.59 3.87

Date03_Sub03_monitor_move.1
ADD-S (%) ↑ 9.14 32.37 15.03 63.27 30.76 51.38
ADD (%) ↑ 8.43 13.24 9.25 32.85 7.59 24.54
CD (cm) ↓ 2.83 19.83 2.46 40.97 28.32 3.09

Date03_Sub03_plasticcontainer.2
ADD-S (%) ↑ 55.25 61.63 16.48 23.24 4.57 84.65
ADD (%) ↑ 13.84 44.28 8.37 4.15 2.14 58.15
CD (cm) ↓ 12.81 8.70 26.06 27.79 41.60 5.62

Date03_Sub03_stool_lift.2
ADD-S (%) ↑ 73.65 18.15 19.38 23.13 8.30 94.42
ADD (%) ↑ 37.80 15.43 9.64 6.05 2.64 82.53
CD (cm) ↓ 10.56 26.86 5.73 45.05 50.46 1.37

Date03_Sub03_stool_sit.2
ADD-S (%) ↑ 85.03 98.68 97.88 26.56 5.44 98.67
ADD (%) ↑ 69.71 96.64 91.98 16.93 4.03 96.65
CD (cm) ↓ 5.66 3.13 1.54 36.35 46.52 1.68

Date03_Sub03_suitcase_lift.0
ADD-S (%) ↑ 69.41 81.78 16.46 35.64 49.11 90.27
ADD (%) ↑ 24.89 52.97 9.47 8.74 14.43 76.77
CD (cm) ↓ 10.22 6.95 14.05 13.97 33.97 2.3

Date03_Sub03_suitcase_move.0
ADD-S (%) ↑ 71.95 35.00 22.58 37.79 77.35 94.41
ADD (%) ↑ 41.66 17.16 9.59 9.76 41.32 79.25
CD (cm) ↓ 9.34 17.34 3.35 27.54 26.47 1.32

Date03_Sub03_tablesmall_lean.3
ADD-S (%) ↑ 52.26 98.72 93.40 50.70 32.52 98.55
ADD (%) ↑ 44.13 96.52 80.17 18.00 18.45 95.37
CD (cm) ↓ 6.01 8.13 8.50 37.76 32.43 14.38

Date03_Sub03_tablesmall_lift.2
ADD-S (%) ↑ 46.86 48.88 12.70 45.02 15.03 70.67
ADD (%) ↑ 23.23 26.54 10.25 15.97 7.92 44.03
CD (cm) ↓ 11.10 44.79 10.56 40.56 46.03 7.03

Date03_Sub03_tablesmall_move.3
ADD-S (%) ↑ 48.65 94.12 93.57 37.25 1.66 98.31
ADD (%) ↑ 28.78 84.67 75.58 12.00 1.64 95.16
CD (cm) ↓ 11.34 22.70 8.37 29.06 26.47 5.22

Date03_Sub03_tablesquare_lift.1
ADD-S (%) ↑ 85.52 96.58 10.33 5.05 3.30 97.02
ADD (%) ↑ 50.60 91.95 4.79 1.52 2.25 92.9
CD (cm) ↓ 7.14 2.15 30.80 44.14 36.26 0.68

Date03_Sub03_tablesquare_move.2
ADD-S (%) ↑ 97.09 99.36 99.21 15.44 41.38 99.35
ADD (%) ↑ 92.17 98.98 98.60 10.71 22.26 98.96
CD (cm) ↓ 4.22 2.86 2.26 43.09 50.02 2.31

Table 3. Per-video comparison on BEHAVE Dataset. ADD and ADD-S are AUC (0 to 0.5 m) percentage for pose evaluation. CD is chamfer distance for
shape reconstruction evaluation. Table continues on the next page. (This is part 1 of 4.)



Video Metric DROID-SLAM [61] BundleTrack [69] KinectFusion [43] NICE-SLAM [85] SDF-2-SDF [53] Ours

Date03_Sub03_tablesquare_sit.3
ADD-S (%) ↑ 81.23 99.09 98.97 64.13 57.54 99.1
ADD (%) ↑ 78.30 98.65 98.26 33.85 35.25 98.71
CD (cm) ↓ 3.04 1.49 1.13 37.66 36.43 2.22

Date03_Sub03_toolbox.3
ADD-S (%) ↑ 0.08 26.69 2.50 5.96 9.01 92.39
ADD (%) ↑ 0.08 20.25 1.44 3.53 1.52 68.97
CD (cm) ↓ 1.42 34.63 22.42 44.52 26.47 1.70

Date03_Sub03_trashbin.1
ADD-S (%) ↑ 72.44 30.27 52.37 24.45 5.90 91.31
ADD (%) ↑ 48.50 21.79 30.18 11.60 2.07 73.23
CD (cm) ↓ 8.67 15.10 14.71 47.01 42.50 4.62

Date03_Sub03_yogamat.2
ADD-S (%) ↑ 45.99 17.04 17.27 14.54 69.35 95.8
ADD (%) ↑ 21.05 12.27 4.61 3.16 21.24 73.06
CD (cm) ↓ 9.66 15.32 11.58 57.95 26.47 0.92

Date03_Sub04_boxlarge.0
ADD-S (%) ↑ 78.77 50.00 11.32 17.14 22.68 90.81
ADD (%) ↑ 39.96 44.56 8.91 7.66 6.57 59.99
CD (cm) ↓ 9.15 94.26 4.76 25.77 41.14 2.55

Date03_Sub04_boxlong.2
ADD-S (%) ↑ 30.54 24.48 6.40 5.92 7.04 13.53
ADD (%) ↑ 8.48 13.05 4.60 2.60 2.49 5.37
CD (cm) ↓ 8.74 76.45 8.43 37.69 26.47 24.72

Date03_Sub04_boxmedium.0
ADD-S (%) ↑ 5.05 29.29 5.40 14.67 6.06 92.65
ADD (%) ↑ 2.50 8.91 2.99 2.69 2.24 30.34
CD (cm) ↓ 4.12 69.32 5.83 26.99 26.47 1.27

Date03_Sub04_boxsmall.0
ADD-S (%) ↑ 0.07 38.07 19.26 18.48 5.40 88.35
ADD (%) ↑ 0.07 23.81 11.46 10.55 2.98 64.11
CD (cm) ↓ 3.07 48.46 6.40 22.40 48.37 2.78

Date03_Sub04_boxtiny.0
ADD-S (%) ↑ 1.36 12.90 2.92 5.57 11.97 42.99
ADD (%) ↑ 0.81 7.40 2.19 1.76 3.44 28.52
CD (cm) ↓ 34.18 68.38 2.07 29.79 26.47 3.54

Date03_Sub04_chairblack_hand.1
ADD-S (%) ↑ 74.11 93.52 40.70 45.71 19.26 96.61
ADD (%) ↑ 20.40 86.55 15.73 10.10 2.03 93.0
CD (cm) ↓ 8.91 3.79 15.32 28.98 38.09 1.35

Date03_Sub04_chairblack_liftreal.1
ADD-S (%) ↑ 47.82 64.32 11.18 6.90 1.37 40.10
ADD (%) ↑ 10.85 20.65 4.57 1.66 0.36 10.04
CD (cm) ↓ 81.37 17.57 5.37 25.04 26.47 7.95

Date03_Sub04_chairblack_sit.1
ADD-S (%) ↑ 80.91 90.64 73.12 24.95 38.99 97.69
ADD (%) ↑ 56.35 83.45 46.21 11.76 23.92 95.25
CD (cm) ↓ 7.04 4.86 9.53 24.96 38.25 3.61

Date03_Sub04_chairwood_hand.0
ADD-S (%) ↑ 61.54 68.00 4.54 30.96 37.45 94.38
ADD (%) ↑ 17.25 33.62 3.33 6.18 1.80 86.84
CD (cm) ↓ 12.81 11.76 31.75 27.24 26.47 1.32

Date03_Sub04_chairwood_lift.3
ADD-S (%) ↑ 64.87 29.10 16.22 32.87 16.12 54.47
ADD (%) ↑ 36.92 10.57 7.70 9.45 5.79 12.13
CD (cm) ↓ 12.69 11.21 6.22 42.00 35.90 19.81

Date03_Sub04_chairwood_sit.1
ADD-S (%) ↑ 76.25 98.15 71.86 56.97 31.97 98.14
ADD (%) ↑ 32.16 95.67 45.56 35.31 9.82 94.83
CD (cm) ↓ 10.16 6.93 13.44 30.31 34.57 1.04

Date03_Sub04_monitor_hand.3
ADD-S (%) ↑ 98.21 99.41 98.81 60.24 12.56 99.38
ADD (%) ↑ 96.86 99.24 95.69 23.50 5.32 99.21
CD (cm) ↓ 4.13 4.35 3.04 14.61 38.55 3.30

Date03_Sub04_monitor_move.3
ADD-S (%) ↑ 6.31 16.72 15.52 4.93 4.07 10.83
ADD (%) ↑ 4.62 8.44 6.47 4.10 2.31 5.52
CD (cm) ↓ 7.67 16.76 2.16 34.00 25.43 4.12

Date03_Sub04_plasticcontainer_lift.2
ADD-S (%) ↑ 45.35 40.99 12.05 7.59 12.95 73.63
ADD (%) ↑ 12.91 23.34 8.37 2.86 6.86 36.16
CD (cm) ↓ 7.08 71.91 6.20 34.26 41.69 5.76

Date03_Sub04_stool_move.0
ADD-S (%) ↑ 74.77 46.72 30.19 18.13 76.73 55.24
ADD (%) ↑ 48.47 27.65 21.74 7.14 44.05 31.78
CD (cm) ↓ 7.95 25.46 5.33 45.27 26.47 1.25

Date03_Sub04_stool_sit.0
ADD-S (%) ↑ 0.51 98.15 97.56 41.58 9.88 98.14
ADD (%) ↑ 0.45 95.57 83.62 11.90 5.68 95.19
CD (cm) ↓ 4.30 3.67 2.87 28.76 33.65 2.79

Date03_Sub04_suitcase_ground.0
ADD-S (%) ↑ 59.70 96.59 14.83 18.85 6.36 96.93
ADD (%) ↑ 20.56 92.75 12.21 8.12 5.23 93.61
CD (cm) ↓ 10.41 1.91 3.18 22.11 37.86 1.17

Date03_Sub04_suitcase_lift.2
ADD-S (%) ↑ 34.95 31.68 25.40 29.32 11.21 71.91
ADD (%) ↑ 18.14 10.65 11.03 11.75 2.95 64.51
CD (cm) ↓ 5.53 58.81 8.84 49.20 47.01 1.91

Date03_Sub04_tablesmall_hand.0
ADD-S (%) ↑ 61.21 29.93 16.53 39.31 21.32 92.94
ADD (%) ↑ 37.48 10.46 8.17 8.22 7.03 85.62
CD (cm) ↓ 9.09 9.89 24.59 35.72 42.35 8.45

Table 4. Per-video comparison on BEHAVE Dataset, continued from previous page. (This is part 2 of 4.)



Video Metric DROID-SLAM [61] BundleTrack [69] KinectFusion [43] NICE-SLAM [85] SDF-2-SDF [53] Ours

Date03_Sub04_tablesmall_lean.0
ADD-S (%) ↑ 78.16 98.44 96.66 17.29 33.80 98.49
ADD (%) ↑ 66.19 95.09 87.52 14.88 18.06 95.34
CD (cm) ↓ 13.51 8.27 7.89 46.25 40.48 9.36

Date03_Sub04_tablesmall_lift.3
ADD-S (%) ↑ 43.3 18.38 10.62 18.74 37.41 30.33
ADD (%) ↑ 26.87 8.81 6.95 7.78 9.85 11.81
CD (cm) ↓ 6.87 12.59 7.99 19.63 38.33 5.53

Date03_Sub04_tablesquare_hand.0
ADD-S (%) ↑ 93.83 98.95 91.30 63.69 33.70 98.82
ADD (%) ↑ 46.35 97.41 72.31 19.86 24.62 96.69
CD (cm) ↓ 6.56 3.80 3.81 39.31 38.35 1.63

Date03_Sub04_tablesquare_lift.3
ADD-S (%) ↑ 75.82 48.09 12.99 49.94 5.41 96.13
ADD (%) ↑ 26.25 16.71 7.92 3.48 3.08 90.62
CD (cm) ↓ 11.98 8.40 10.71 24.59 43.44 0.7

Date03_Sub04_tablesquare_sit.2
ADD-S (%) ↑ 93.00 99.18 98.94 63.02 15.54 99.25
ADD (%) ↑ 82.80 98.94 97.97 35.62 11.70 99.07
CD (cm) ↓ 4.10 2.27 3.42 40.13 53.83 2.99

Date03_Sub04_toolbox.3
ADD-S (%) ↑ 30.35 15.10 7.02 4.66 54.25 80.91
ADD (%) ↑ 17.38 9.44 4.37 3.70 29.63 58.0
CD (cm) ↓ 2.47 45.67 13.61 30.08 26.47 3.99

Date03_Sub04_trashbin.0
ADD-S (%) ↑ 78.62 66.63 34.18 16.89 4.10 95.62
ADD (%) ↑ 54.54 34.15 21.41 8.34 3.14 63.9
CD (cm) ↓ 6.16 5.33 18.05 50.63 47.54 1.05

Date03_Sub04_yogamat.3
ADD-S (%) ↑ 25.56 33.14 11.67 15.06 51.85 85.55
ADD (%) ↑ 4.67 8.74 6.92 3.53 5.65 58.87
CD (cm) ↓ 16.85 18.22 3.58 42.54 26.47 2.4

Date03_Sub05_boxlarge.1
ADD-S (%) ↑ 66.41 42.28 19.60 9.10 34.96 94.47
ADD (%) ↑ 15.43 6.25 2.49 1.86 5.68 20.02
CD (cm) ↓ 11.90 15.68 8.48 38.84 32.29 1.13

Date03_Sub05_boxlong.3
ADD-S (%) ↑ 3.26 35.26 2.70 5.87 16.01 88.02
ADD (%) ↑ 0.56 3.40 1.63 0.96 3.29 59.52
CD (cm) ↓ 10.53 67.09 27.56 38.73 37.49 36.11

Date03_Sub05_boxmedium.2
ADD-S (%) ↑ 27.94 20.85 28.36 32.95 7.65 84.52
ADD (%) ↑ 18.57 12.96 13.51 15.80 3.60 47.87
CD (cm) ↓ 10.12 12.18 5.82 44.70 43.36 2.51

Date03_Sub05_boxsmall.3
ADD-S (%) ↑ 73.21 4.39 5.12 37.15 77.48 93.89
ADD (%) ↑ 38.61 3.95 2.58 10.21 37.97 75.64
CD (cm) ↓ 5.23 12.72 2.86 27.07 26.47 2.0

Date03_Sub05_boxtiny.3
ADD-S (%) ↑ 23.63 9.58 14.49 5.77 1.27 54.23
ADD (%) ↑ 12.80 5.32 5.57 2.81 0.87 40.9
CD (cm) ↓ 37.93 8.70 2.3 49.22 26.47 3.49

Date03_Sub05_chairblack.1
ADD-S (%) ↑ 56.78 45.68 32.90 58.88 4.77 69.13
ADD (%) ↑ 30.54 39.49 27.99 18.43 2.22 43.12
CD (cm) ↓ 18.52 27.39 25.19 23.76 39.51 8.36

Date03_Sub05_chairwood.1
ADD-S (%) ↑ 69.21 92.03 46.51 21.12 13.16 90.43
ADD (%) ↑ 30.01 79.75 28.99 11.83 6.28 75.08
CD (cm) ↓ 16.58 5.14 13.52 51.69 43.14 7.78

Date03_Sub05_monitor.1
ADD-S (%) ↑ 67.18 64.86 73.46 71.04 15.64 89.05
ADD (%) ↑ 55.08 46.39 48.30 52.76 8.71 75.96
CD (cm) ↓ 7.28 52.23 4.19 32.80 31.32 7.37

Date03_Sub05_plasticcontainer.3
ADD-S (%) ↑ 51.10 41.66 24.21 23.13 71.54 76.33
ADD (%) ↑ 16.60 15.12 9.06 4.40 29.34 48.3
CD (cm) ↓ 23.18 24.71 7.18 32.27 26.47 6.34

Date03_Sub05_stool.2
ADD-S (%) ↑ 80.38 96.42 94.69 40.17 33.24 98.27
ADD (%) ↑ 60.87 86.80 75.13 27.59 9.88 94.41
CD (cm) ↓ 9.21 6.66 4.55 43.11 45.26 4.13

Date03_Sub05_suitcase.2
ADD-S (%) ↑ 71.70 81.13 63.07 25.34 30.69 97.39
ADD (%) ↑ 30.48 68.68 26.68 7.04 4.30 94.31
CD (cm) ↓ 6.27 2.31 6.47 29.06 43.58 0.96

Date03_Sub05_tablesmall.1
ADD-S (%) ↑ 50.53 56.23 51.31 23.32 59.44 71.39
ADD (%) ↑ 34.29 39.52 36.06 9.47 6.41 55.86
CD (cm) ↓ 12.63 27.61 9.87 56.51 32.95 17.35

Date03_Sub05_tablesquare.2
ADD-S (%) ↑ 35.60 96.16 66.70 7.55 35.69 97.93
ADD (%) ↑ 23.15 87.43 53.86 5.28 25.12 94.5
CD (cm) ↓ 8.73 3.63 29.20 52.47 35.46 1.27

Table 5. Per-video comparison on BEHAVE Dataset, continued from previous page. (This is part 3 of 4.)



Video Metric DROID-SLAM [61] BundleTrack [69] KinectFusion [43] NICE-SLAM [85] SDF-2-SDF [53] Ours

Date03_Sub05_toolbox.1
ADD-S (%) ↑ 55.27 24.17 23.30 13.54 52.24 89.64
ADD (%) ↑ 36.92 19.30 15.41 6.45 29.98 71.47
CD (cm) ↓ 7.80 17.49 4.94 38.37 26.47 2.94

Date03_Sub05_trashbin.3
ADD-S (%) ↑ 78.78 56.89 24.44 32.29 40.09 92.2
ADD (%) ↑ 48.88 16.38 14.24 14.19 6.16 56.67
CD (cm) ↓ 7.46 8.89 5.58 36.88 26.47 2.28

Date03_Sub05_yogamat.3
ADD-S (%) ↑ 62.56 66.92 8.02 25.46 17.43 96.6
ADD (%) ↑ 21.54 8.33 3.84 5.52 1.42 78.41
CD (cm) ↓ 8.92 12.68 2.99 40.50 26.47 1.04

Mean
ADD-S (%) ↑ 56.14 59.06 38.37 28.80 25.71 83.63
ADD (%) ↑ 32.29 45.03 28.45 11.93 10.05 67.52
CD (cm) ↓ 11.24 19.27 9.36 36.03 35.99 4.66

Table 6. Per-video comparison on BEHAVE Dataset, continued from previous page. (This is part 4 of 4.)
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Figure 4. Qualitative comparison on HO3D video “AP13”. Our method is robust to observations with little texture or geometric cues (large area of cylindrical
surface), whereas comparison methods struggle.
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Figure 5. Qualitative comparison on HO3D video “MPM13”. Note that our pose tracking at times appears to be slightly more accurate than the ground-truth
as shown in the rightmost column.
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Figure 6. Qualitative comparison on YCBInEOAT video “sugar_box1".



G
T

N
IC
E‐
SL
AM

Bu
nd

le
Tr
ac
k

O
ur
s

SD
F‐
2‐
SD

F
Ki
ne

ct
Fu
si
on

D
RO

ID
‐S
LA

M

Time

Figure 7. Qualitative comparison on BEHAVE video “Date03_Sub03_chairblack_hand.3”. Our method is robust to severe and even complete occlusions
(3rd and last column).
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Figure 8. Qualitative comparison on BEHAVE video “Date03_Sub04_tablesquare_lift.3”. Our method is sometimes even more accurate than ground-truth
(3rd and last column). It is also robust to severe occlusions (4th column).



Figure 9. Despite fast object pose change and motion blur, our approach produces even more accurate pose than ground-truth. Image is best viewed by
zooming in.
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Figure 10. Example of noisy masks (purple) from the video segmentation network, showing both false positive and false negative predictions. The first
column visualizes the first frame’s mask that initializes tracking. Our method is robust to noisy segmentation and maintains accurate tracking despite such
noise. Figure is continued on the next page. (Part 1 of 2.)
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Figure 11. Example of noisy masks (purple) from the video segmentation network. Continued from previous figure. (Part 2 of 2.)



Figure 12. Example of noisy depth from BEHAVE video “Date03_Sub04_tablesquare_lift.3”. Left: Fused point cloud using ground-truth pose and masks
from the video segmentation network. Right: Final reconstruction from our approach without any trimming.
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Figure 13. Failure case. The occurrence of severe occlusion, segmentation error, dearth of texture or geometric cues together lead to tracking failure. When
the object re-appears, the recovered pose is affected by symmetric geometry.
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