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1. Network Architecture

We show the detailed architecture of the skeleton estima-
tion network in Fig. 1 and the sampling network in Fig. 2,
respectively. Both two networks adopt the DGCNN [8]
as the backbone, which is composed of four EdgeConv
layers. The outputs of the EdgeConv layers are concate-
nated together and go through the MLP layer, followed by
a max pooling to get the global features. Then we repeat
the concatenation operation again to get the contextual fea-
tures. The following MLPs are for processing the contex-
tual features to predict the weight matrix. In our network,
each MLP layer is followed by a batch normalization and a
LeakyReLU non-linearity. The output of the skeleton esti-
mation network is a set of skeletal spheres and the output of
the sampling network is a subset of points.

2. Temperature τ

In our main paper, we have given our different anneal-
ing strategies when training the sampling network with
Gumbel-softmax operation. Here we visualize the anneal-
ing curves in Fig. 3, including step, linear and exponential.
In practice, we rectify τ to avoid the gradient blowing up.

Figure 3. Different annealing strategies, including step, linear and
exponential. We rectify τ at 0.5 in case of gradient blowing up.

3. Visualization of Sampled Points

In this section, we visualize the sampling examples from
the classification task. As shown in Fig. 4, we show the
results of four different sampling ratios.

4. Skeleton Estimation

As we estimate the skeleton in an unsupervised manner,
a byproduct of our work is the predicted skeletal spheres.
Following [4], we evaluate our method on the Model-
Net40 [10] dataset from two aspects. We first measure the
difference between the shapes reconstructed from the skele-
tons and the ground truth shapes using the Chamfer distance
(CD) [1] and Hausdorff distance (HD), which are denoted
as CD-Recon and HD-Recon, respectively. Then, we again
use the CD and HD to measure the difference between the
output skeletal representations and the ground truth skele-
ton, denoted as CD-Skel and HD-Skel. In this paper, we
use the skeletons computed by DPC [9] as the ground truth.
These distances are calculated by randomly sampled points
from the respective geometries.

We compare with three works, two traditional ones, i.e.,
mean curvature skeleton [7] and L1-medial skeleton [2],
and one learning-based, i.e., Point2Skeleton [4]. We use
the code released by the authors for comparison. As shown
in Table 1, we present the quantitative results with these
three methods using the four metrics aforementioned. In
addition, we also report the results of our method with dif-
ferent numbers of predicted skeletal spheres. In Fig. 5, we
visualize the examples of these methods. The L1-medial
skeleton [2] and mean curvature skeleton [7] can only pro-
duce 1D curves, thus resulting in large errors when used
to abstract non-tubular shapes. In contrast, our method can
generate more compact and structurally meaningful skeletal
representations for various geometries. Overall, the results
validate that our method not only more accurately encodes
the information from the original input, but also produces
more reasonable skeletonization results that are geometri-
cally meaningful.



𝑁𝑁
×

64

𝑁𝑁
×

64

𝑁𝑁
×

128

𝑁𝑁
×

256

𝑁𝑁
×

512

𝑁𝑁
×

512

𝑁𝑁
×

512

𝑁𝑁
×

3

𝐾𝐾
×
𝐿𝐿

×
512

𝐾𝐾 × 𝐿𝐿 × 3

𝐾𝐾
×
𝐿𝐿

×
1

Grouping

C
onvex 

C
om

bination

Skeleton

EdgeConv MLP Max pooling

Figure 1. The detailed architecture of the proposed skeleton estimation network.
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Figure 2. The detailed architecture of the proposed sampling network.

Method CD-Recon HD-Recon CD-Skel HD-Skel

L1 [2] 0.0651 0.0476 0.1632 0.1287
MCS [7] 0.0517 0.0308 0.1145 0.0865

Point2Skeleton [4] 0.0334 0.0164 0.0887 0.0551
Ours-64 0.0352 0.0265 0.0916 0.6729

Ours-128 0.0303 0.0159 0.0860 0.0561
Ours-256 0.0314 0.0167 0.0854 0.0559

Table 1. Quantitative comparisons with other point cloud skeletonization methods, including L1-medial skeleton (L1), mean curvature
skeleton (MCS) and Point2Skeleton. In addition, we also report the results of our method with different numbers of predicted skeletal
spheres, namely 64, 128 and 256 spheres.

5. Point Cloud Registration

In our main paper, we have shown the performance of
different point cloud tasks, including classification, retrieval
and reconstruction. In this section, we will report our per-
formance on point cloud registration. For a fair compar-
ison, we follow the setting of SampleNet [3] to conduct
this experiment. Specifically, we employ the PCRNet [6]

to construct a point cloud registration network and use the
car category with 1024 points in ModelNet40 [10] dataset
to train this network. We use 4925 pairs of source and tem-
plate point clouds from the training split and 100 source-
template pairs from the testing split for performance evalu-
ation. The template is rotated by three random Euler angles
in the range of [-45, 45] to obtain the source.

We first train the PCRNet on complete point clouds with
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Figure 4. Sampled points from the classification experiment. From left to right: input with 1024 points, 128 points, 64 points, 32 points
and 16 points.
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Figure 5. Visualization of skeletons of different works. (a)
Input point cloud; (b) Ground truth skeleton (DPC [9]); (c)
L1-medial skeleton [2]; (d) Mean curvature skeleton [7]; (e)
Point2Skeleton [4]; (f) Ours. In (e) and (f), we show the skele-
tal spheres which consist of the coordinates of the sphere centers
and their radii.

two losses: the ground truth rotation and the Chamfer dis-
tance [1] between the registered source and template point
clouds. Then, we freeze PCRNet and apply the same sam-

pling strategy to both the source and template. The evalua-
tion metric of registration performance is the mean rotation
error (MRE) between the estimated and the ground truth ro-
tation in angle-axis representation. We compare with three
methods, RS, FPS and SampleNet, and report the perfor-
mance in Table 2. As shown, our method outperforms oth-
ers by a large margin, and the MRE of the proposed sam-
pling remains low with the increasing sampling ratio. For
example, at the sampling ratio of 32, the MRE with our
method is 3.73°, while SampleNet results in an MRE of
5.94°. The performance validates our approach to be an effi-
cient sampling method for the registration task, overcoming
the challenge of sampling two different point clouds.

Sampling Ratio MRE

RS FPS [5] SN [3] Ours

8 10.42 5.66 4.88 2.99
16 16.69 8.07 5.48 3.30
32 24.52 13.46 5.94 3.73
64 36.99 21.69 7.95 4.54

Table 2. Point cloud registration results on ModelNet40. RS: ran-
dom sampling; FPS: farthest point sampling; SN: SampleNet.
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