
PersonNeRF: Personalized Reconstruction from Photo Collections
Supplementary Material

A. Network Architecture
Fig. 1 and Fig. 2 show the network design of our canoni-

cal MLP and pose correction MLP. Specifically, we provide
the details of how we incorporate appearance embedding
ℓapp as well as pose embedding ℓpose vectors into the cor-
responding networks.

Figure 1. Canonical MLP netwrok. We use an 8-layer MLP with
width=256 that takes as input positional encoding γ of position x
and appearance embedding vector ℓapp with dimension=256. The
network outputs color c and density σ. There is a skip connection
that concatenates γ(x) to the fifth layer. We use ReLU activations
after each fully connected layer. For the output layer, we use a
ReLU activation for the density value σ to ensure non-negativity
and a sigmoid activation for the color c to constrain values between
0 and 1.

Figure 2. Pose correction MLP network. We use a 4-layer MLP
with width=256 that takes as input joint angles Ω and a pose em-
bedding vector ℓpose with dimension=16. The network produces
the residuals of joint angles that are added back to the input pose
to refine the body pose prediction.

B. Experiments on ZJU-MoCap dataset
B.1. Experimental Setup

We additionally performed experiments on the ZJU-
MoCap dataset [1], which provides ground-truth unseen
views that enable computation of metrics and analysis of
performance on sparse/dense data inputs. We selected sub-
jects 377, 392, and 393–the same individual in different
clothing. We evenly selected 10 frames from camera-1
videos to represent “sparse data” (ZJU-Sparse). For “dense
data”, we used the entire video (ZJU-Dense). The remain-
ing 22 camera views were used for evaluation. We report
PSNR, SSIM, and LPIPS* (LPIPS ×103) metrics and high-
light the best and second-best values.

B.2. Results on ZJU-Sparse dataset

Table 1 shows comparisons on the ZJU-Sparse dataset.
Our method outperforms HumanNeRF and our separate-
network of our approach in SSIM and LPIPS, with the
largest margins in LPIPS, a better measure of visual quality
as seen in Fig. 3).

Figure 3. Our approach enhances details in the face and clothing
(green). Single network training further improves shape and ap-
pearance consistency (red).

B.3. Results on ZJU-Dense dataset

We conducted an analysis on the ZJU-Dense dataset. As
shown in Table 2, our method, which was designed for
sparse inputs, still demonstrates improvement. The im-
provement is particularly noticeable when we remove the
regularization designed for handling sparse observations,

Subject 377 Subject 392 Subject 393
PSNR ↑ SSIM ↑ LPIPS* ↓ PSNR ↑ SSIM ↑ LPIPS* ↓ PSNR ↑ SSIM ↑ LPIPS* ↓

HumanNeRF 29.59 0.9721 33.53 30.38 0.9626 51.03 27.56 0.9535 55.69
Ours (Separate Nets) 29.61 0.9734 27.66 29.48 0.9640 42.65 27.28 0.9537 47.53

Ours (Single Net) 29.55 0.9737 26.62 30.03 0.9665 38.79 27.59 0.9558 46.16

Table 1. Comparison on ZJU-Sparse dataset (10 images per subject).



indicating that the shared latent space is a promising area
for exploration even for dense video.

PSNR ↑ SSIM ↑ LPIPS* ↓

HumanNeRF 29.92 0.9684 30.97
Ours 29.81 0.9692 30.40
Ours w/o reg. 29.98 0.9700 28.47

Table 2. Our method outperforms HumanNeRF on the ZJU-Dense
dataset (an entire video per subject). The best quality is achieved
when the regularization designed for sparse input is removed

B.4. Ablation Study of Photo Numbers

In addition, we analyzed how the performance is affected
by the number of training images. We do see improvement
with more photos on ZJU-MoCap dataset, though with di-
minishing returns. Table 3 shows numerical results.

# of images per subject PSNR ↑ SSIM ↑ LPIPS* ↓

a video (∼ 600 frames) 29.81 0.9692 30.40
20 images 29.45 0.9679 32.38
10 images 29.06 0.9653 37.19

Table 3. The ablation study of photo numbers run on ZJU-MoCap.

B.5. Novel Pose Evaluation

PSNR ↑ SSIM ↑ LPIPS* ↓

Separate Nets 29.08 0.9691 31.05
Single Net 30.06 0.9727 27.75

Table 4. We achieve better performance for unseen poses when
training all photos with different appearances in a single network.

Our focus was on maintaining original poses, not re-
posable avatar creation, avoiding, e.g., making a famous
tennis player perform actions they never did. That said, ex-
periments suggest that our method is capable of handling
poses that have not been previously encountered, especially
when all photos are trained within a single network. We per-
formed an analysis on ZJU-Sparse dataset (10 frames per
subject) where we applied the learned model to body poses
from the unseen frames (∼600 frames per subject). As pre-
sented in Table 4, single-network training achieves better
performance in all metrics. This is because the optimized
single, universal motion weight volume can be constrained
by a much larger number of poses compared to the separate
ones, resulting in a better solution. Fig. 4 shows the visual
comparison.

Figure 4. Single-network training improves appearance consis-
tency (green) and maintains body shapes (red) for unseen poses.

C. Additional Results
In addition to Roger Federer, we demonstrate our

method on a wide variety of subjects that cover different
genders and skin tones. In particular, we show results on
three tennis athletes, Novak Djokovic, Serena Williams,
and Rafael Nadal where each has three appearance sets
in the datasets we collected. Moreover, we applied our
method to self-captured data (rugby, hoodie) provided by
HumanNeRF [2] where we evenly select 15 frames from
the videos. We present quantitative results in FID in Table
5 and visually compare them with HumanNeRF [2] in Fig.
5. The quality improvement over the related work is similar
to the case of Roger Federer.

D. More Visualizations of Personalized Space
In the paper, we show a visualization of (appearance,

camera view) plane of the reconstructed space of Roger
Federer. Here we show the other two planes, (appearance,
body pose) plane in Fig. 6 and (body pose, camera view)
plane in Fig. 7 where we keep the camera view and appear-
ance fixed, respectively.

Additionally, we show visualizations of the rebuilt per-
sonalized spaces of the other 3 persons, Novak Djokovic in
Fig. 8, 9 and 10, Serena Willams in Fig. 11, 12 and 13, and
Rafael Nadal in Fig. 14, 15 and 16.
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Novak Djokovic Serena Willams Rafael Nadal Self-captured [2]
2013 2016 2019 2009 2010 2011 2014 2019 2022 rugby hoodie

HumanNeRF [2] 87.07 62.01 64.17 104.23 100.52 113.41 90.04 64.95 76.68 102.13 109.31
Our method 81.38 57.14 58.74 87.81 90.70 85.17 80.95 62.75 61.71 97.00 96.99

Table 5. Comparison to related work: FID is computed per subject per year. In addition, We evenly select 15 frames from self-captured
data (rugby, hoodie) provided by HumanNeRF [2]. Lower FID score is better.

Figure 5. Visual comparisons to HumanNeRF [2] on the tennis athletes (Novak Djokovic, Serena Willams, Rafael Nadal) and self-captured
subjects (rugby, hoodie) from HumanNeRF. Photo credits to Getty Images.



Figure 6. Visualization of the (appearance, body pose) plane of the reconstructed space of Roger Federer.



Figure 7. Visualization of the (body pose, camera view) plane of the reconstructed space of Roger Federer.



Figure 8. Visualization of the (appearance, camera view) plane of the reconstructed space of Novak Djokovic.

Figure 9. Visualization of the (appearance, body pose) plane of the reconstructed space of Novak Djokovic.



Figure 10. Visualization of the (body pose, camera view) plane of the reconstructed space of Novak Djokovic.



Figure 11. Visualization of the (appearance, camera view) plane of the reconstructed space of Serena Willaims.

Figure 12. Visualization of the (appearance, body pose) plane of the reconstructed space of Serena Williams.



Figure 13. Visualization of the (body pose, camera view) plane of the reconstructed space of Serena Willaims.



Figure 14. Visualization of the (appearance, camera view) plane of the reconstructed space of Rafael Nadal.

Figure 15. Visualization of the (appearance, body pose) plane of the reconstructed space of Rafael Nadal.



Figure 16. Visualization of the (body pose, camera view) plane of the reconstructed space of Rafael Nadal.
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