
7. Appendix

Algorithm 1: Non-Dominating Sorting
Input: combined population P , objective vectors L

1 F ← {} // set of fronts
2 for p ∈ P do
3 Sp ← {} //set of p dominated solutions
4 np ← 0 // domination counter of p
5 for q ∈ P do
6 if p dominates q then
7 Sp ← Sp ∪ {q}
8 else if q dominates p then
9 np ← np + 1

10 if np == 0 then
11 prank = 1 // p belongs to the first front
12 F1 ← F1 ∪ {p}
13 i← 1 // initialize front counter
14 while Fi ̸= ∅ do
15 Q← ∅ // store solutions of the next front
16 for p ∈ Fi do
17 for q ∈ Sp do
18 nq ← nq − 1
19 if nq == 0 then
20 // q belongs to the next front
21 qrank ← i+ 1
22 Q← Q ∪ {q}

23 i← i+ 1
24 Fi ← Q

25 return F

Algorithm 1 described the non-dominated sorting method proposed by
Deb et al. [13] for sorting solutions with multiple objectives. The method
first determines solutions in the first front (not dominated by any solutions)
then iteratively constructs the remaining fronts.

Algorithm 2: Sparse-RS pm Selection Method
Input: conducted function evaluations i, budget N ,

initial mutation size αinit

1 t← int( i
N · 10000)

2 c← {0, 50, 200, 500, 1000, 2000, 4000, 6000, 8000}
3 j ← index of c that is closest to t

4 β ← {2, 4, 5, 6, 8, 10, 12, 15, 20}
5 return αinit/βj

Algorithm 2 reduces the mutation size as the number of classifiers queries
increases. The method linearly re-scales the current number of models i
with the assumption of N = 10000.

Algorithm 3: Adapted Sparse-RS Attack
Input: objective vector F , input x ∈ X , sparsity k,

zero-sampling pr0, initial mutation size
αinit, budget N

1 M ← k random pixel indices to be perturbed
2 ∆← values of the perturbation to be applied
3 L← F (x; {M,∆})
4 for i← 0; i < N ; i+ 1 do
5 pm ← selection(αinit) // refer to Algorithm 2
6 M ′,∆′ ← mutation({M,∆}, pm)

7 L′ ← F (x; {M ′,∆′})
8 if {M ′,∆′} dominates {M,∆} then
9 M ←M ′,∆← ∆′, L← L′

10 return {M,∆}
Algorithm 3 outlines the Sparse-RS algorithm proposed by Croce at

al. [10] adapted to the multi-objective scenario. dominates is corresponds
to Definition 3.1.

Algorithm 4: SA-MOO Method
Input: objective vector F , input x ∈ X , query

budget N , sparsity k, population size s,
zero-sampling probability pr0

// Initial Population
1 P ← {{M1,∆1}, · · · , {Ms,∆s}}

// Objective Evaluation
2 L← {F (x; {M1,∆1}), · · · , F (x; {Ms,∆s})}
3 for i← 0; i < N ; i← i+ s do

// Uniformly Sample s/2 pairs of P indices
4 J ← U({1, · · · , s}) s

2×2

5 PO ← {}
6 LO ← {}
7 for j ∈ J do
8 O ← crossover(Pj0 , Pj1)

9 M ′′
1 ,∆

′′
1 ← mutation(O1)

10 M ′′
2 ,∆

′′
2 ← mutation(O2)

11 PO ← PO ∪ {{M ′′
1 ,∆1}, {M ′′

2 ,∆2}}
12 LO ← LO ∪ {F (x; {M ′′

1 ,∆
′′
1})}

13 LO ← LO ∪ {F (x; {M ′′
2 ,∆

′′
2})}

14 P ← P ∪ PO

15 L← L ∪ LO

16 P ← non-dominated sorting(P )
17 P ← P1:s // Select lowest ranked solutions
18 L← LP

19 return P // return population of solutions



AT1 AT2

Method ASR l0 l2 SSIM ASR l0 l2 SSIM
SA-MOO* 84.40% 15.02 8.00 0.95 76.90% 15.28 8.54 0.95
SA-MOO** 84.40% 15.02 8.00 0.95 76.90% 15.28 8.54 0.95

SA-MOO* 44.20% 18.39 11.93 0.93 39.10% 18.81 12.90 0.93
SA-MOO** 44.20% 18.37 11.92 0.93 39.10% 18.82 12.90 0.93

Table 4. Statistics of attack success rate, average ssim, and average l0, l2 distances of non-targeted (top) and targeted (bottom) attacks
on the CIFAR-10 trained models AT1 and AT2. Where ”SA-MOO” is the proposed method, ** refers to both crossover and mutation
operators, * refers to only the mutation operator.

Algorithm 5: Crossover Operator
Input: pixel locations Ma, Mb, perturbation values

∆a,∆b, crossover size pc, sparsity k
1 O ← {}
2 for r ∈ {a, b} and e ∈ {b, a} do
3 U ←Me \ (Mr ∩Me)

4 b← min{pc · k, |U |}
5 A← U(Mr)

b

6 B ← U(U)b

7 M ′
r ← (Mr \A) ∪B

8 ∆′
r ← (∆r \∆rA) ∪∆eB

9 O ← O ∪ {{M ′
r,∆

′
r}}

10 return O

Algorithm 6: Mutation Operator
Input: pixel locations M ′

a, perturbation values ∆′
a,

mutation size pm, sparsity k, zero-sample
probability pr0

1 U ← {1, · · · , h · w} // image height h and width w

2 T ← U \M ′
a

3 A← U(M ′
a)

pm·k

4 B ← U(T )pm·k

5 M ′′
a ← (M ′

a \A) ∪B

// Sample with a zero-probability pr0

6 ∆′′
a ← (∆′

a \∆′
aA

) ∪ U({−1, 0, 1})(pm·k)×3

7 return {M ′′
a ,∆

′′
a}


