7. Appendix

Algorithm 1: Non-Dominating Sorting

Input: combined population P, objective vectors L
1 F < {} // set of fronts
2 for p € Pdo

3 Sp < {} /lset of p dominated solutions
4 np < 0// domination counter of p
5 forg € Pdo
6 if p dominates q then
7 | Sy« SpU{q}
8 else if ¢ dominates p then
9 | npnp+1
10 if n, == 0 then
11 Prank = 1 // p belongs to the first front
12 F1+— FLU {p}
13 ¢ <— 1// initialize front counter
14 | while F; # 0 do
15 Q < () // store solutions of the next front
16 for p € F; do
17 for g € S, do
18 Ng < ng — 1
19 if n, == 0 then
20 /I q belongs to the next front
21 Grank < 1+ 1
2 Q + QU{q}
23 14 1+1
24 Fi+—Q
25 return F

Algorithm 1 described the non-dominated sorting method proposed by
Deb et al. [13] for sorting solutions with multiple objectives. The method
first determines solutions in the first front (not dominated by any solutions)
then iteratively constructs the remaining fronts.

Algorithm 2: Sparse-RS p,,, Selection Method

Input: conducted function evaluations 7, budget N,
initial mutation size tn¢

1 ¢ < int( - 10000)

2 ¢ + {0, 50, 200, 500, 1000, 2000, 4000, 6000, 8000}

3 j < index of c that is closest to ¢

4 f+{2,4,5,6,8,10,12, 15,20}

5 return &t/ 3;

Algorithm 2 reduces the mutation size as the number of classifiers queries
increases. The method linearly re-scales the current number of models %
with the assumption of N = 10000.

Algorithm 3: Adapted Sparse-RS Attack
Input: objective vector F, input x € X, sparsity k,
zero-sampling pry, initial mutation size
Qinit, budget N
1 M < k random pixel indices to be perturbed

2 A < values of the perturbation to be applied
L+ F(x;{M,A})

w

4 fori < 0;: < N;i+ 1do

5 Dm < selection(cn;t) // refer to Algorithm 2
6 M’ A+ mutation({M, A}, pm)

7 L'+ F(x;{M',A"})

8 | if{M’' A"} dominates {M,A} then

9 | MM A« AN, LI

10 return {M, A}

Algorithm 3 outlines the Sparse-RS algorithm proposed by Croce at
al. [10] adapted to the multi-objective scenario. dominates is corresponds
to Definition 3.1.

Algorithm 4: SA-MOO Method
Input: objective vector F), input x € X, query
budget IV, sparsity k, population size s,
zero-sampling probability prg

// Initial Population
1 P+ {{My,Ar},- - {Ms,As}}

// Objective Evaluation
2 L« {F(X; {Ml’ Al})v e vF(X; {MS, As})}
3fori<0;i<N;i<1+sdo
// Uniformly Sample s/2 pairs of P indices
4 J U1, ,s})zx2

s | Po<{}

6 Lo + {}

7 for j € Jdo

8 O < crossover(Pj,, P;,)

9 M, A} < mutation(O)

10 MY A «— mutation(O3)

11 Po + PoU{{M{, A}, {M) As}}
12 Lo < Lo U{F(x; {M{',Af})}

13 Lo < Lo U{F(x;{M3,A7})}

4 | P—PUP,
5 | L« LULo

16 P + non-dominated sorting(P)
17 P + Py., /] Select lowest ranked solutions
18 L+ Lp

19 return P // return population of solutions




AT]_ AT2
Method ASR lo lo SSIM ASR lo lo SSIM
SA-MOO* 84.40% 15.02 8.00 0.95 76.90% 15.28 8.54 0.95
SA-MOO** 84.40% 15.02 8.00 0.95 76.90% 15.28 8.54 0.95
SA-MOO* 44.20% 18.39 11.93 0.93 39.10% 18.81 12.90 0.93
SA-MOO** 44.20% 18.37 11.92 0.93 39.10% 18.82 12.90 0.93

Table 4. Statistics of attack success rate, average ssim, and average lo, > distances of non-targeted (top) and targeted (bottom) attacks
on the CIFAR-10 trained models AT; and AT>. Where "SA-MOO” is the proposed method, ** refers to both crossover and mutation
operators, * refers to only the mutation operator.

Algorithm 5: Crossover Operator
Input: pixel locations M,, My, perturbation values
A, Ay, crossover size p, sparsity k
O+ {}
for r € {a,b} and e € {b,a} do

U« M\ (M, N M)

b < min{p, - k,|U|}

5 | A« UM,

6 | B+UU)"

7 | M.+ (M,\A)UB

s | AL (A\A)UA.,
9 | O+ OU{{M],AL}}

[ ST

s W

10 return O

Algorithm 6: Mutation Operator

!
a’

Input: pixel locations M, perturbation values A
mutation size p,,, sparsity k, zero-sample
probability prg

1 U+ {1,---,h-w}// image height h and width w

2 T+ U\ M,
3 A+ UM)PmE
4 B+ U(T)Pm*
s M« (M,\A)UB

/I Sample with a zero-probability prg

ok

¢ AL (AL AL UU{1,0, 1))
7 return { M/ Al'}




