
Appendix
This appendix provides implementation details, in-

cluding model configurations, pre-training and fine-tuning
recipes, and sparse and dense encoding methods for FC-
MAE pre-training (see §A). In §B, we present complete
fine-tuning accuracy comparisons between ConvNeXt V1
and V2 on ImageNet 1K and 22K. In §C, we perform analy-
ses on the efficiency of sparse encoding and general feature
analysis using the class selectivity index. Finally, in §D, we
conduct further ablation studies and analysis.

A. Implementation Details
A.1. ConvNeXt V2 model configurations

The basic models, i.e., Tiny (28M), Base (89M) and
Large (198M), follow the same configurations of the stage,
block (B), and channel (C) settings of the ConvNeXt
V1 [25].

• ConvNeXt V2-T: C=96, B=(3, 3, 9, 3)

• ConvNeXt V2-B: C=128, B=(3, 3, 27, 3)

• ConvNeXt V2-L: C=192, B=(3, 3, 27, 3)

Given the same definitions above, we scale the model
to provide a broad model size spectrum, targeting versatile
scenarios. First, to obtain efficient models, we scale down
as follows:

• ConvNeXt V2-A: C=40, B=(2, 2, 6, 2)

• ConvNeXt V2-F: C=48, B=(2, 2, 6, 2)

• ConvNeXt V2-P: C=64, B=(2, 2, 6, 2)

• ConvNeXt V2-N: C=80, B=(2, 2, 8, 2)

A, F, P, N denote Atto (3.7M), Femto (5.2M), Pico
(9.1M), and Nano (15.6M) models designed originally
in [31]. Next, to introduce the large-capacity variant, we
scale up as follows:

• ConvNeXt V2-H: C=352, B=(3, 3, 27, 3)

H denotes Huge (659M) model, which is newly pre-
sented in this work.

A.2. ImageNet Experiments

Pre-training All models share the same pre-training setup,
as noted in Table 1. We use the linear lr scaling rule [18]:
lr = base lr×batchsize / 256.

ImageNet-1K fine-tuning As the learning capacity varies
by model size, we adopt different fine-tuning recipes for
each model. We summarize them in Table 2, 3 and 4.
We see longer fine-tuning epochs help small models. We

adopt two different learning-rate layer decay strategies in
this work: group-wise [25], where we treat three sequential
layers as a single “layer” and use the same decaying value
for them, and the layer-wise [2], where we assign a distinct
value for each layer, both following the standard decaying
rule. The default is a layer-wise strategy, but we apply the
group-wise decaying strategy to Base and Large models.

ImageNet-22K intermediate fine-tuning We conduct
ImageNet-22K intermediate fine-tuning with the FCMAE-
pretrained ConvNeXt models. We use nano, tiny, base,
large, and huge models. The setups are summarized in Ta-
ble 5 and 6. Similarly, using larger layer-wise learning rate
decay values for small models is helpful.

Sparse encoding implementations. We propose two pos-
sible implementations to enable FCMAE pre-training: 1)
sparse encoding using sparse convolution [12, 19, 20] sup-
ported by external libraries [12, 15], and 2) simulating
sparse encoding with the masked dense convolution, which
can be easily implemented by applying binary masks be-
fore and after the standard convolution operation. As
they produce numerically identical outputs, both can be
adopted depending on different use cases. In this work,
we adopt sparse encoding on the GPU environment, where
we use MinkowskiEngine library [12] and PyTorch frame-
work [29]; we use dense masked conv based encoding on
TPU accelerators using Jax [4]. The experiments in the
main paper are all conducted on TPU (v3-256) pods and
we release a PyTorch reproduction.

A.3. Object detection and segmentation on COCO

For COCO experiments, we use the MMDetection [7]
toolbox and the final model weights from ImageNet-1K pre-
training as network initializations. All models are trained
with a 3x schedule (36 epochs) and a batch size of 32. We
utilize an AdamW optimizer [27] with a learning rate of
1e-4, a weight decay of 0.05 and sweep layer-wise learning
rate decay in {0.9, 0.95}, stochastic depth rate in {0.2, 0.3,
0.4, 0.5}. We employ a large-scale jittering augmentation
[17] (1024×1024 resolution, scale range [0.1, 2.0]). We use
single-scale testing with soft-NMS [3] during inference.

A.4. Semantic segmentation in ADE20K

For ADE20K experiments, we use the MMSegmentation
[14] toolbox. We use an AdamW optimizer [27] with the
following hyperparameters: a weight decay of 0.05, a batch
size of 16 and sweep layer-wise decay rate {0.8, 0.9}, learn-
ing rate {1e-4, 2e-4, 3e-4}, stochastic depth rate {0.1, 0.2,
0.3, 0.4}. All models are trained for 160K iterations with
an input resolution of 512×512. In inference, a multi-scale
test using resolutions that are [0.75,0.875,1.0,1.125,1.25] of
512×2048 is employed.

Similar to [32], we initialized the segmentation mod-
els using model weights after supervised fine-tuning on

1



config value
optimizer AdamW [27]
base learning rate 1.5e-4
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.95 [8]
batch size 4096
learning rate schedule cosine decay [26]
warmup epochs [18] 40
training epochs 800 or 1600
augmentation RandomResizedCrop

Table 1. Pre-training setting.

config value
optimizer AdamW
base learning rate 2e-4
weight decay 0.05 (F), 0.3 (A/P/N)
optimizer momentum β1, β2=0.9, 0.999
layer-wise lr decay [2, 13] 0.9
batch size 1024
learning rate schedule cosine decay
warmup epochs 0
training epochs 600
augmentation RandAug (9, 0.5) [16]
label smoothing [30] 0.2
mixup [34] 0.0 (A), 0.3 (F/P), 0.5 (N)
cutmix [33] 0.0 (A), 0.3 (F/P), 0.5 (N)
drop path [24] 0.1 (A/N), 0.0 (F/P),
head init [25] 0.001
ema 0.9999

Table 2. End-to-end IN-1K fine-tuning setting for Atto (A),
Femto (F), Pico (P) and Nano (N) models.

config value
optimizer AdamW
base learning rate 8e-4
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999
layer-wise lr decay [2, 13] 0.9
batch size 1024
learning rate schedule cosine decay
warmup epochs 40
training epochs 300
augmentation RandAug (9, 0.5) [16]
label smoothing [30] 0.1
mixup [34] 0.8
cutmix [33] 1.0
drop path [24] 0.2
head init [25] 0.001
ema 0.9999

Table 3. End-to-end IN-1K fine-tuning setting for Tiny model.

ImageNet-1K, as we found its performance superior to us-
ing the self-supervised pre-trained weights directly.

B. Complete comparisons with V1

In Tables 7 and 8, we present detailed experiment-level
comparisons between ConvNeXt V1 [25, 31] and V2. In
particular, Table 7 shows ImageNet-1K fine-tuning results
using eight models: Atto, Femto, Nano, Pico, Tiny, Base,
Large, and Huge, which range from low-compute (Atto,
3.7M) to large-capacity models (Huge, 660M). We see a
consistent and significant improvement across all models.
The best performance is achieved when the architecture is
upgraded from V1 to V2 and the self-supervised learning
framework FCMAE is used, demonstrating the effective-

config value
optimizer AdamW
base learning rate 6.25e-3 (B/L), 1.25e-3 (H)
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999
layer-wise lr decay [2, 13] 0.6 (B/L), 0.75 (H)
batch size 1024
learning rate schedule cosine decay
warmup epochs 20 (B/L), 10 (H)
training epochs 100 (B/L), 50 (H)
augmentation RandAug (9, 0.5) [16]
label smoothing [30] 0.1
mixup [34] 0.8
cutmix [33] 1.0
drop path [24] 0.1 (B), 0.2 (L), 0.3 (H)
head init [25] 0.001
ema 0.9999

Table 4. End-to-end IN-1K fine-tuning setting for Base (B),
Large (L), and Huge (H) models.

config value
optimizer AdamW
base learning rate 2.5e-4
weight decay 0.05
optimizer momentum β1, β2=0.9, 0.999
layer-wise lr decay [2, 13] 0.8 (B/L/H), 0.9 (N/T)
batch size 4096
learning rate schedule cosine decay
warmup epochs 5
training epochs 90
augmentation RandAug (9, 0.5) [16]
label smoothing [30] 0.1
mixup [34] 0.8
cutmix [33] 1.0
drop path [24] 0.(N/T), 0.1 (B/L), 0.3 (H)
head init [25] 0.001
ema None

Table 5. End-to-end IN-22K intermediate fine-tuning settings.

config value
optimizer AdamW
base learning rate 2.5e-5
weight decay 1e-8
optimizer momentum β1, β2=0.9, 0.999
layer-wise lr decay [2, 13] 0.8 (B/L), 0.85 (H), 0.9 (N/T)
batch size 512
learning rate schedule cosine decay
warmup epochs None
training epochs 30 (B/L/H), 90 (N/T)
augmentation RandAug (9, 0.5) [16]
label smoothing [30] 0.1
mixup [34] None
cutmix [33] None
drop path [24] 0.1(N/T), 0.2 (B), 0.3 (L), 0.5(H)
head init [25] 0.001
ema 0.9999 (N/T/B/L), None (H)

Table 6. End-to-end IN-1K fine-tuning settings (after IN-22K
intermediate fine-tuning).

ness of the co-design. In Table 8, we present ImageNet-
22K intermediate fine-tuning results. The pre-training and
fine-tuning process consists of three steps: 1) FCMAE pre-
training, 2) ImageNet-22K fine-tuning, and 3) ImageNet-
1K fine-tuning. Here, we focus on five V2 models: Nano,
Tiny, Base, Large and Huge. We see consistent improve-
ment over the V1 counterparts. In particular, the V2 Base
(86.8%/87.7%) and Large (87.3%/88.2%) models outper-
form the next-level model sizes of V1, which are the Large
(86.6%/87.5%) and XLarge (87.0%/87.8%) models. The

2



Backbone Method #param FLOPs Val acc.

ConvNeXt V1-A Supervised 3.7M 0.55G 75.7
ConvNeXt V2-A Supervised 3.7M 0.55G 76.2 (+0.5)
ConvNeXt V2-A FCMAE 3.7M 0.55G 76.7 (+1.0)
ConvNeXt V1-F Supervised 5.2M 0.78G 77.5
ConvNeXt V2-F Supervised 5.2M 0.78G 78.0 (+0.5)
ConvNeXt V2-F FCMAE 5.2M 0.78G 78.5 (+1.0)
ConvNeXt V1-P Supervised 9.1M 1.37G 79.5
ConvNeXt V2-P Supervised 9.1M 1.37G 79.7 (+0.2)
ConvNeXt V2-P FCMAE 9.1M 1.37G 80.3 (+0.8)
ConvNeXt V1-N Supervised 15.6M 2.45G 80.8
ConvNeXt V2-N Supervised 15.6M 2.45G 81.2 (+0.4)
ConvNeXt V2-N FCMAE 15.6M 2.45G 81.9 (+1.1)
ConvNeXt V1-T Supervised 28.6M 4.47G 82.1
ConvNeXt V2-T Supervised 28.6M 4.47G 82.5 (+0.4)
ConvNeXt V2-T FCMAE 28.6M 4.47G 83.0 (+0.9)
ConvNeXt V1-B Supervised 89M 15.4G 83.8
ConvNeXt V1-B FCMAE 89M 15.4G 83.7
ConvNeXt V2-B Supervised 89M 15.4G 84.3 (+0.5)
ConvNeXt V2-B FCMAE 89M 15.4G 84.9 (+1.1)
ConvNeXt V1-L Supervised 198M 34.4G 84.3
ConvNeXt V1-L FCMAE 198M 34.4G 84.4
ConvNeXt V2-L Supervised 198M 34.4G 84.5 (+0.2)
ConvNeXt V2-L FCMAE 198M 34.4G 85.8 (+1.5)
ConvNeXt V2-H FCMAE 660M 115G 86.3

Table 7. ImageNet-1K fine-tuning results with a single 224×224
crop. The improvement over the V1 supervised model is shown in
parentheses.

Backbone image size #param FLOPs Val acc.

ConvNeXt V2-N 2242 15.6M 2.45G 82.1
ConvNeXt V2-N 3842 15.6M 7.21G 83.4
ConvNeXt V1-T 2242 28.6M 4.47G 82.9
ConvNeXt V2-T 2242 28.6M 4.47G 83.9(+1.0)
ConvNeXt V1-T 3842 28.6M 13.1G 84.1
ConvNeXt V2-T 3842 28.6M 13.1G 85.1(+1.0)
ConvNeXt V1-B 2242 89M 15.4G 85.8
ConvNeXt V2-B 2242 89M 15.4G 86.8(+1.0)
ConvNeXt V1-B 3842 89M 45.2G 86.8
ConvNeXt V2-B 3842 89M 45.2G 87.7(+0.9)
ConvNeXt V1-L 2242 198M 34.4G 86.6
ConvNeXt V2-L 2242 198M 34.4G 87.3(+0.7)
ConvNeXt V1-L 3842 198M 101.1G 87.5
ConvNeXt V2-L 3842 198M 101.1G 88.2(+0.7)
ConvNeXt V1-XL 2242 350M 60.9G 87.0
ConvNeXt V1-XL 3842 350M 179.0G 87.8
ConvNeXt V2-H 3842 660M 337.9G 88.7
ConvNeXt V2-H 5122 660M 600.8G 88.9

Table 8. ImageNet-22K intermediate fine-tuning results with a
single 224×224 crop. The improvement over the V1 supervised
model is shown in parentheses.

V2 Huge model also achieves a new state-of-the-art with
a performance of 88.9%. Our proposal demonstrates that

Atto Femto Pico Nano Tiny Base Large

100

200

300

400

500

600

Th
ro

ug
hp

ut
 (i

m
ag

e 
/ s

)

masked conv
sparse conv

Atto Femto Pico Nano Tiny Base Large

10

20

30

40

50

M
ax

 M
em

or
y 

(G
)

Figure 1. Sparse encoding efficiency. Under the pre-training
setup, we measure the training throughput (image/s) and max GPU
memory usage (G). The per GPU batch size is 64, and the through-
put values are measured using 20 forward and backward steps. Our
results show that the sparse convolution-based encoder allows for
improved pre-training efficiency compared to the dense masked
convolution-based counterpart.

pure convolutional models can also be strong and scalable
vision learners with mask-based pre-training.

C. Further Analyses

Sparse encoding efficiency. One of the key design choices
in our FCMAE framework is the use of sparse convolu-
tion [12, 19, 20] during pre-training. The primary purpose
is to block the flow of information from the masked re-
gion and facilitate masked autoencoder pre-training. As a
byproduct, it also offers improved computational and mem-
ory efficiency during pre-training, as the kernels only apply
to the visible pixels. However, we note that the sparse con-
volution libraries [12,15] are not highly optimized for mod-
ern hardware, and the efficiency achieved usually depends
on the frameworks [1, 4, 29] used in practice.

To better understand the actual pre-training efficiency
achieved using sparse convolution, we conducted bench-
mark experiments using a controlled setup with Minkowski
Engine v0.5.4 [12] and PyTorch [29]. We simulated the pre-
training masked input (image size 224×224, masking ratio
0.6, mask size 32×32) and compared the training through-
put (image/s) and max GPU memory usage (G) between the
sparse convolution-based and dense masked convolution-
based encoders. While the results may vary depending on
the experimental environment (we used PyTorch V1.8.0,

3



stage_1_layer0 stage_1_layer1 stage_1_layer2 stage_2_layer0 stage_2_layer1 stage_2_layer2 stage_3_layer0 stage_3_layer1 stage_3_layer2

stage_3_layer3 stage_3_layer4 stage_3_layer5 stage_3_layer6 stage_3_layer7 stage_3_layer8 stage_3_layer9 stage_3_layer10 stage_3_layer11

stage_3_layer12 stage_3_layer13 stage_3_layer14 stage_3_layer15 stage_3_layer16 stage_3_layer17 stage_3_layer18 stage_3_layer19 stage_3_layer20

0.0 0.2 0.4 0.6 0.8 1.0

Class Selectivity Index

0.00

0.01

0.02

0.03

0.04

0.05

PD
F

stage_3_layer21
V1 FCMAE
V2 FCMAE

stage_3_layer22 stage_3_layer23 stage_3_layer24 stage_3_layer25 stage_3_layer26 stage_4_layer0 stage_4_layer1 stage_4_layer2

Figure 2. Class selectivity index distribution. The x-axis and y-axis show the class selectivity index and its density (PDF), respectively.
Using the ImageNet-1K validation dataset, we calculated the class selectivity index distribution of both FCMAE pre-trained ConvNeXt V1
(red) and V2 (blue). While they tend to match closely in the early stages, the distribution becomes different in the deep layers. V2 tends to
include more class-generic features in the later stages.

CUDA 11.1, CuDNN 8.2, and NVIDIA RTX A6000 GPU),
we observed a moderate increase in pre-training efficiency,
with an average of 1.3× increase in throughput and a 2×
decrease in max memory usage across the models. The gap
becomes more salient as the model size increases.

Class Selectivity Index. FCMAE pre-trained ConvNeXt
V2 has a distinctive feature characteristic compared to V1.
We conducted a class selectivity index analysis on the FC-
MAE pre-trained weights for ConvNeXt V1 and V2 to
understand this. The class selectivity index is a metric
that measures the difference between the highest class-
conditional mean activity and all other class-conditional
mean activities. The final normalized value lies between 0
and 1, with 1 indicating that a filter activates only for a sin-
gle class and 0 indicating that the filter activates uniformly
for all classes. In Figure 2, we plot the class selectivity
index distribution for all intermediate layers in the model,
using the output of every residual block. The distribution
is closely matched between V1 and V2 in the early stages,
but they begin to diverge in the deep layers, such as stage
3 layer 12. As the layer becomes deeper, the plot shows
that V2 (bimodal) tends to include more class-generic fea-
tures than V1 (unimodal). Since class-agnostic features are
more transferrable [28], this leads to better fine-tuning per-
formance in downstream tasks. We leave more explorations
as a future study.

GRN functions
case aggregation normalization Val acc.

base - - 83.7
(a) X - - 83.9
(b) X ∗ G(X) ✓ - 83.9
(c) X ∗ N (X) - ✓ unstable
(d) X ∗ N (G(X)) ✓ ✓ 84.6

Table 9. GRN component analysis. We report the fine-tuning per-
formance after the 800 epoch FCMAE pre-training. Here, affine
parameters and residual connection are omitted for clarity. The
base denotes the ConvNeXt V1 fine-tuning performance. The ag-
gregation and normalization are spatial L2-norm pooling and
channel-wise divisive normalization, respectively. Case-(a) indi-
cates a simple baseline of channel-wise scaling and shifting (with
affine parameters) without explicit feature normalization.

D. Additional Experiments

GRN component analysis. The proposed Global Rela-
tion Network (GRN) consists of three steps: global feature
aggregation, feature normalization, and feature calibration.
The main paper demonstrates that the combination of L2-
norm based aggregation and divisive normalization works
well in practice. Table 9 verifies the individual contribu-
tion of these components using ConvNeXt V2-Base as the
encoder. When either component is dropped, performance
significantly decreases, and the training becomes unstable if
feature normalization is not preceded by global aggregation.
This supports the idea that both operations work together to
make GRN effective.

4



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

masking ratio (%)

82.5

83.0

83.5

84.0

84.5

85.0

Figure 3. Masking ratio. We observe that a masking ratio of 0.6
provides the best result. The y-axis is ImageNet-1K accuracy (%).

Masking ratios. We conduct a hyper-parameter analysis on
the masking ratio for a mask size of 32 × 32. The results,
shown in Figure 3, suggest that a masking ratio in the range
of 0.5 to 0.7 produces the best results, with a masking ratio
of 0.6 providing the highest performance. The model’s per-
formance declines at the two extremes of either removing
or leaving 90% of the input information, although it is more
robust when more information is retained.

Comparison with contrastive SSL. In this work, we com-
pare the performance of the two dominant self-supervised
learning (SSL) approaches: contrastive learning [5, 6, 9–11,
21,23] and masked image modeling [2,22,32]. Specifically,
we compare the end-to-end fine-tuning performance of Mo-
CoV3 [11], the current state-of-the-art contrastive learning
method, with our proposed FCMAE framework using the
same ConvNeXt V2-Base as the encoder. We follow the de-
fault pre-training and fine-tuning recipes for each approach
and present the results below.

Sup, 300ep. MoCo V3 FCMAE
84.3 83.7 84.9

We use the 300-epoch supervised learning baseline as a ref-
erence. The above table shows that FCMAE leads to better
representation quality than MoCo V3 and also outperforms
the supervised baseline. This is consistent with the recent
observations that masked image modeling offers superior
results over contrastive learning-based SSL for end-to-end
fine-tuning. In this work, this success was also made possi-
ble with pure ConvNets.

Understanding feature collapse. Given the same masked
image modeling task, the fundamental difference between
convolution (sliding window with local kernels) and self-
attention (set operator) leads to different learning behav-
iors. If the Conv kernel size is too big (e.g. larger than the
masked region), instead of learning useful features, convo-
lution can “cheat” the MAE task by simply copying/interpo-
lating neighbor patterns, giving the network no incentive to
learn diverse features across channels. Due to spatial down-
sampling, this degradation happens more in later stages of
the network, which also explains the Fig 4 in the main pa-
per: feature diversity decreases along the layers.

Figure 4. MAE reconstruction with different mask sizes: 4×4
(top), 8×8 (middle), and 16×16 (bottom)

1x1 2x2 4x4 8x8 16x16
Mask Sizes

0.1

0.2

0.3

0.4

0.5

Av
er

ag
ed

 M
SE

 L
os

s

ConvNeXt V1
ViT

1x1 2x2 4x4 8x8 16x16
Mask Sizes

65

70

75

80

KN
N 

To
p-

5 
Er

ro
r (

%
)

ConvNeXt V1
ViT

Figure 5. Analysis on reconstruction error and representation
quality.

0.0 0.2 0.4 0.6 0.8 1.0

Normalized Layer Index

0.0

0.1

0.2

0.3

0.4

0.5

Fe
at

ur
e 

C
os

in
e 

D
is

ta
nc

e

V1 FCMAE (83.7)
LRN FCMAE (83.2)
BN FCMAE (80.5)
LN FCMAE (83.8)
V2 FCMAE (84.6)

Figure 6. More feature cosine distance analysis.

To better understand this phenomenon and provide more
evidence, we conduct further experiments and analyses. For
this toy experiments, we use CIFAR 100 (32×32 images);
We test ConvNeXt encoder (6 blocks, with 7×7 kernels)
and Transformer encoder (4 blocks), both of which have
0.6M params; We vary the mask size ([1,2,4,8,16]) and use
a masking ratio of 0.5; We train the models for 50 epochs.
The representation quality is evaluated by computing the
top-5 error from a KNN classifier (K=20).

In Figure 4, we present the reconstruction results ob-
tained by ViT and ConvNeXt on inputs with different mask
sizes. ViT has been known to produce block-structure arti-
facts in its reconstructions, whereas the reconstructions gen-
erated by ConvNeXt are significantly smoother. In terms
of quantitative evaluation, the mean squared errors (MSE)
for ConvNeXt are generally smaller than those for ViT (as
shown in Figure 5-left).

5



Although ConvNeXt produces smaller mean squared er-
rors (MSE) than ViT in the reconstruction task (as shown in
Figure 5-left), it is important to note that this outcome has
a potential downside. As demonstrated in Figure 5-right,
there is a negative correlation between the reconstruction
loss and the quality of representation learning (top-5 err)
when evaluating the learned representation quality using K-
NN (K=20). This suggests that the ConvNeXt may priori-
tize ease of reconstruction over learning more semantically-
clustered, meaningful features, which could lead to the
learning of relatively trivial features.

While increasing the mask size can make the task more
challenging for ConvNeXt and help prevent trivial solu-
tions, it can also lead to information loss, eventually result-
ing in no visible region at all. As a consequence, the qual-
ity of representation learning may ultimately decrease. In
contrast, our GRN design explicitly promotes diverse high-
dimensional features during the MAE pre-training and does
not rely on a specific mask design.

Additional feature cosinedistance analysis. We conduct
additional feature cosine distance analysis with different
normalization layers, including Layer Normalization (LN),
Batch Normalization (BN), and Local Response Normaliza-
tion (LRN) in Fig 6. The overall tendencies are consistent
with the final fine-tuning performances: BN exhibits a worst
feature-collapse phenomenon, LRN generates an irregular
diversity pattern, and LN mitigates the issue to some extent
but with generally lower diversity than GRN.

References
[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-
mawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A
system for large-scale machine learning. In Operating Sys-
tems Design and Implementation, 2016.

[2] Hangbo Bao, Li Dong, and Furu Wei. BEiT: BERT pre-
training of image transformers. In ICLR, 2022.

[3] Navaneeth Bodla, Bharat Singh, Rama Chellappa, and
Larry S Davis. Soft-nms–improving object detection with
one line of code. In ICCV, 2017.

[4] James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal Maclau-
rin, George Necula, Adam Paszke, Jake VanderPlas, Skye
Wanderman-Milne, and Qiao Zhang. JAX: composable
transformations of Python+NumPy programs, 2018.

[5] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Pi-
otr Bojanowski, and Armand Joulin. Unsupervised learn-
ing of visual features by contrasting cluster assignments. In
NeurIPS, 2020.

[6] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In
ICCV, 2021.

[7] Kai Chen, Jiaqi Wang, Jiangmiao Pang, Yuhang Cao, Yu
Xiong, Xiaoxiao Li, Shuyang Sun, Wansen Feng, Ziwei
Liu, Jiarui Xu, Zheng Zhang, Dazhi Cheng, Chenchen Zhu,
Tianheng Cheng, Qijie Zhao, Buyu Li, Xin Lu, Rui Zhu,
Yue Wu, Jifeng Dai, Jingdong Wang, Jianping Shi, Wanli
Ouyang, Chen Change Loy, and Dahua Lin. MMDe-
tection: Open mmlab detection toolbox and benchmark.
arXiv:1906.07155, 2019.

[8] Mark Chen, Alec Radford, Rewon Child, Jeffrey Wu, Hee-
woo Jun, David Luan, and Ilya Sutskever. Generative pre-
training from pixels. In ICML, 2020.

[9] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Ge-
offrey Hinton. A simple framework for contrastive learning
of visual representations. In ICML, 2020.

[10] Xinlei Chen and Kaiming He. Exploring simple Siamese
representation learning. In CVPR, 2021.

[11] Xinlei Chen, Saining Xie, and Kaiming He. An empirical
study of training self-supervised Vision Transformers. In
ICCV, 2021.

[12] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d
spatio-temporal convnets: Minkowski convolutional neural
networks. In CVPR, 2019.

[13] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christo-
pher D Manning. ELECTRA: Pre-training text encoders as
discriminators rather than generators. In ICLR, 2020.

[14] MMSegmentation contributors. MMSegmentation:
Openmmlab semantic segmentation toolbox and
benchmark. https : / / github . com / open -
mmlab/mmsegmentation, 2020.

[15] Spconv Contributors. Spconv: Spatially sparse convolu-
tion library. https://github.com/traveller59/
spconv, 2022.

[16] Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical automated data augmentation
with a reduced search space. In CVPRW, 2020.

[17] Golnaz Ghiasi, Yin Cui, Aravind Srinivas, Rui Qian, Tsung-
Yi Lin, Ekin D Cubuk, Quoc V Le, and Barret Zoph. Simple
copy-paste is a strong data augmentation method for instance
segmentation. In CVPR, 2021.

[18] Priya Goyal, Piotr Dollár, Ross Girshick, Pieter Noord-
huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,
Yangqing Jia, and Kaiming He. Accurate, large minibatch
SGD: Training ImageNet in 1 hour. arXiv:1706.02677, 2017.

[19] Benjamin Graham, Martin Engelcke, and Laurens Van
Der Maaten. 3d semantic segmentation with submanifold
sparse convolutional networks. In CVPR, 2018.

[20] Benjamin Graham and Laurens van der Maaten. Sub-
manifold sparse convolutional networks. arXiv preprint
arXiv:1706.01307, 2017.

[21] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin
Tallec, Pierre Richemond, Elena Buchatskaya, Carl Doersch,
Bernardo Avila Pires, Zhaohan Guo, Mohammad Ghesh-
laghi Azar, Bilal Piot, koray kavukcuoglu, Remi Munos, and
Michal Valko. Bootstrap your own latent - a new approach
to self-supervised learning. In NeurIPS, 2020.

[22] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollár, and Ross Girshick. Masked autoencoders are scalable
vision learners. In CVPR, 2022.

6

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmsegmentation
https://github.com/traveller59/spconv
https://github.com/traveller59/spconv


[23] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In CVPR, 2020.

[24] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kilian Q
Weinberger. Deep networks with stochastic depth. In ECCV,
2016.

[25] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In CVPR, 2022.

[26] Ilya Loshchilov and Frank Hutter. SGDR: Stochastic gradi-
ent descent with warm restarts. In ICLR, 2017.

[27] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICLR, 2019.

[28] Ari S Morcos, David GT Barrett, Neil C Rabinowitz, and
Matthew Botvinick. On the importance of single directions
for generalization. In ICLR, 2018.

[29] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in pytorch. In NeurIPS, 2017.

[30] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jonathon Shlens, and Zbigniew Wojna. Rethinking the in-
ception architecture for computer vision. In CVPR, 2016.

[31] Ross Wightman. Pytorch image models. https:
//github.com/rwightman/pytorch- image-
models, 2019.

[32] Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin
Bao, Zhuliang Yao, Qi Dai, and Han Hu. Simmim: A simple
framework for masked image modeling. In CVPR, 2022.

[33] Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk
Chun, Junsuk Choe, and Youngjoon Yoo. Cutmix: Regu-
larization strategy to train strong classifiers with localizable
features. In ICCV, 2019.

[34] Hongyi Zhang, Moustapha Cisse, Yann N Dauphin, and
David Lopez-Paz. mixup: Beyond empirical risk minimiza-
tion. In ICLR, 2018.

7

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

