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Table S1. Number of linear layers (#Layers) mapping region fea-
tures to pseudo-words

#Layers APnovel
50 APbase

50 AP50

1 34.0 60.4 53.5
2 33.9 60.5 53.5
3 34.1 60.8 53.8

S1. Implementation Details
We provide more details of the implementation of

BARON on OV-COCO [3] and OV-LVIS [2] benchmarks.
Sampling. For neighborhood sampling strategy, we obtain
top K region proposals from the RPN and filter out those
with an objectness score lower than 0.85. We also discard
regions with an aspect ratio smaller than 0.25 or larger than
4.0. And regions with an area ratio smaller than 0.01 are
also discarded. Then we apply NMS on the region proposals
with IOU threshold 0.1. The region proposals after NMS
are used for neighborhood sampling. We sample G bags of
regions for each region proposal with a probability 0.3 to
sample each surrounding candidate box. For OV-COCO, we
set K = 300 and G = 3. For OV-LVIS, we set K = 500
and G = 4 due to the denser spatial distribution of object
boxes in the LVIS dataset.
Classification Loss.We use CE loss as the classification loss
Lcls on base categories. Given C object categories, we obtain
the embedding fi for the name of the i-th category by the
text encoder (T ) of the VLM. We also learn a background
embedding for non-object regions. If a region is labeled as
the c-th category, the classification loss is

Lcls = − log
exp(τcls · ⟨T (w), fc⟩)∑C
i=0 exp(τcls · ⟨T (w), fi⟩)

, (1)

where τcls is the temperature to re-scale the cosine similarity,
fC is the background embedding and w is the embedding
(pseudo words) of the region. On OV-COCO, we set τcls =
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Table S2. Different sampling strategies

# Strategy APnovel
50 APbase

50 AP50 #regions

1 Grid 25.4 58.0 49.5 36
2 Random 27.3 53.3 46.5 36
3 Random-Tight 29.5 56.9 49.7 36
4 Random-Neighbor 30.7 56.9 50.0 36
5 Ours (reduced) 32.2 58.3 51.5 36
6 Ours 34.0 60.4 53.5 216

50.0. And on OV-LVIS, we set τcls = 100.0 since there are
orders of magnitude more categories defined in the LVIS
dataset.
Alignment Loss. Assuming there are G bags of regions and
the image (teacher) and text (student) embeddings for the
k-th bag of regions are fk

v and fk
t , the alignment loss Lbag

on bag of regions is calculated as

Lbag = −1

2

G−1∑
k=0

(log(pkt,v) + log(pkv,t)). (2)

The pkt,v and pkv,t are calculated as

pkt,v =
exp(τbag · ⟨fk

t , f
k
v ⟩)∑G−1

l=0 exp(τbag · ⟨fk
t , f

l
v⟩)

(3)

pkv,t =
exp(τbag · ⟨fk

v , f
k
t ⟩)∑G−1

l=0 exp(τbag · ⟨fk
v , f

l
t⟩)

, (4)

respectively, where τbag is the temperature to re-scale the
cosine similarity. Assuming there are totally N regions and
the image (teacher) and text (student) embeddings for the
k-th region are gkv and gkt , the alignment loss Lindividual on
individual regions is calculated as

Lindividual = −1

2

N−1∑
k=0

(log(qkt,v) + log(qkv,t)). (5)
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Figure S1. Comparison of different sampling strategies. Green boxes denote the region proposals. Blue boxes stand for sampled region
boxes. The purple box represents the image crop of a bag of regions (a region group).

Figure S2. tSNE visualization of embeddings on COCO categories.
Left: the region features before being projected to pseudo words.
Right: embeddings after sending pseudo words to the text encoder.

The qkt,v and qkv,t are calculated as

qkt,v =
exp(τindividual · ⟨gkt , gkv ⟩)∑N−1

l=0 exp(τindividual · ⟨gkt , glv⟩)
(6)

qkv,t =
exp(τindividual · ⟨gkv , gkt ⟩)∑N−1

l=0 exp(τindividual · ⟨gkv , glt⟩)
, (7)

respectively, where τindividual is the temperature to re-scale
the cosine similarity.

On OV-COCO, we set τbag = 30.0 and τindividual =
50.0. Since there are finer-grained definition of categories
and denser distribution of object boxes in the LVIS dataset,
we set τbag = 20.0 and τindividual = 30.0 on OV-LVIS to
make the contrastive learning harder.
Mapping Region Features to Pseudo-words. In our im-
plementation, we used a single linear layer to map region
features from the detector to pseudo-words. In Table S1, we
show that adding more linear layers (#Layers) brings no no-
ticeable improvements. This observation is also in line with
Maaz et al. [5] that visual properties can be transferred to
language models (LMs) by linearly mapping visual features
to the input space of LMs.
Random Word Dropout. As we apply two different supervi-
sion to the pseudo words, the training can lead certain words
to overfit to certain losses. To alleviate overfitting, we borrow

Figure S3. Image-guided inference of the detector trained on LVIS
dataset. BARON can even recognize the cartoon characters in the
reference images (‘pikachu’ and ‘winnie pooh’).

the idea of Dropout [8] in neural networks where neurons
are randomly dropped during training to avoid overfitting
to specific neurons. We randomly discard pseudo words for
each region with a probability pdrop. By default, we set
pdrop = 0.5 for training on both OV-COCO and OV-LVIS.
Suppression on Novel Categories. On OV-COCO, we ob-
serve a tendency to overfit on base categories due to the
smaller number of categories. And compared with OV-LVIS
where the tail categories act as the novel categories, the dis-
tribution of novel and base categories on COCO is more
balanced. We adopt the following strategies to alleviate sup-
pression on novel categories: (1) detach the objectness pre-
diction branch so that the suppression onto novel categories
would not be back-propagated to the backbone; (2) save the
sampled region proposals into a cache so that regions cov-
ering potential novel categories detected in certain iteration
can be preserved throughout the training phase; (3) use the
output of the second last layer of the VLM (CLIP) for clas-
sification and the final output for aligning bag of regions to
reduce the competition between the two types of losses.

S2. Sampling Strategy
We have introduced two baseline sampling strategies,

i.e. grid sampling and random sampling. The grid sampling
strategy is to equally split an image into grids like the pre-
training stage in OVR-CNN [9]. And the random sampling



Figure S4. Visualization of detection results on OV-COCO. Red boxes are for novel categories, while blue boxes are for base categories.

strategy is to randomly sample region proposals to form a
bag of regions. These two baseline strategies let the bag
of regions represent the whole image. We add two other
strategies to shift the focus to neighboring (local) regions.

We start from the random sampling strategy and let the
bag of regions represent the image crop that tightly encloses
them instead of the whole image (dubbed as Random-Tight).
Then we move to the neighborhood centered on region pro-
posals (dubbed as Random-Neighbor). For each center re-
gion proposal, we randomly sample 2 nearby region propos-
als with GIOU larger than 0.5 to make a bag of regions. We
randomly take 12 region proposals as centers so that the total
number of regions is 36, ensuring a fair comparison with
other strategies. Table S2 shows the performance of these
strategies.

In Fig S1, we show how these sampling strategies differ
and how it gradually develops to our final option. In (a),
we find the equally split grids may either contain too many
objects or only small parts of an object. From (b) to (c), the
bag of regions gradually shift to representing neighboring
local regions from representing the whole image. However,
we observe that there is always box size imbalance such as
the left bottom bag of regions in (d). And there are also large
area of redundant image contents between the regions in a
bag as shown in (c). The box size imbalance and the redun-
dant image contents hinder the image encoder of a VLM to
effectively represent a bag of regions. As shown in (e), our

sampling strategy obtains a bag of neighboring regions of
equal size while capturing potential objects. Although we
still observe image contents between sampled regions that
do not belong to a bag of regions, they only account for a
small portion of the image crop enclosing the bag of regions.

S3. Pseudo Word Encoding

Projecting visual features to word embedding space is
common in region-based visual-language representation
learning methods [1, 4]. In BARON, we project region fea-
tures into pseudo words to fully exploit the inherent compo-
sitional structure of multiple semantic concepts and obtain
more distinctive feature embeddings. In Fig S2, we show the
tSNE visualization of the region features before being pro-
jected to pseudo words and embeddings after sending pseudo
words to the text encoder (TE), i.e. T (w). Gray points repre-
sent base categories while chromatic points represent novel
categories. With pseudo words encoded by TE, the cate-
gories are split into clusters of a more diverse distribution
and distinct boundaries.

S4. Image-Guided Inference

We further examine the generalization ability of our
method by using images to guide the inference of the de-
tector. We use the image encoder of CLIP [6] to encode the
reference image. And the detector used in this experiment



Figure S5. Visualization of detection results on OV-LVIS dataset. Red boxes and masks are for novel (rare) categories, while blue boxes and
masks are for base categories.

Figure S6. Visualization of transfer detection results on Objects365 dataset.

is trained on the LVIS dataset. Given a reference image, our
detector is able to detect the object in the reference image
as shown in Fig S3. Our detector can even recognize the
cartoon characters in the reference images (‘pikachu’ and
‘winnie pooh’).

S5. Detection Results

We show more detection results of our method in Fig S4
and Fig S5. On COCO dataset, BARON correctly detects
novel categories including bus, keyboard, couch and so on.



On LVIS dataset, BARON detects rare categories like salad
plate, fedora hat, gas mask and so on. We also visualize
the results when transferring the LVIS-trained detector to
Objects365 [7] dataset in Fig S6. We find that the LVIS-
trained detector is able to correctly recognize a wide range
of object concepts defined in Objects365 dataset, exhibiting
impressive generalization ability.

S6. Potential Negative Societal Impacts
Our models have learned knowledge from vision-

language models (VLMs) that are pre-trained on large-scale
web image-text pairs. They potentially inherit and even re-
inforce harmful biases and stereotypes in the pre-trained
VLMs. We suggest scrupulous probing before applying our
models for any purpose.
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