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1. More Details about Experiment Setup

Testing details. For all testing datasets, images are resized
with the larger dimension equal to 1, 024 pixels, which pre-
serve the original aspect ratio. Besides, image feature is
extracted at three scales, i.e., {1/

√
2, 1,

√
2}. L2 normal-

ization is performed for each scale independently and fea-
tures of three scales are mean averaged, followed by an-
other L2 normalization to form the final feature. Under the
asymmetric retrieval setting, queries are embedded with the
lightweight query model φq , while the gallery images are
embedded by various large models, which are further ag-
gregated into compact embedding via the proposed mixer
φmix for efficient retrieval.
Gallery features. Tab. 1 provides details about the gallery
features adopted in this work. In real-world applications, re-
trieval latency, feature extraction latency and storage over-
head are three important considerations.
(1) Retrieval latency. Although inverted index greatly
speeds up image retrieval based on local features, the online
retrieval latency is still larger compared to compact global
features, e.g., 0.995s for HOW [8] vs. 0.345s for DELG [1],
when searching in a gallery of 1 million images. Our ap-
proach aggregates local features into compact descriptors
at the gallery side, which reduces online retrieval latency
while improving asymmetric retrieval accuracy.
(2) Feature extraction latency. To achieve scale invariance,
existing deep local features are extracted at multiple image
scales. An image is scaled to different sizes and passed
through feature extractor multiple times, which notably in-
creases the computational complexity, e.g., it takes about
258.1ms to extract local features of an image for HOW [8].
In contrast, compact global feature is derived from the fea-
ture maps of the deep representation model by spatial pool-
ing, which is suitable for resource-constrained scenarios.
For example, it only takes about 16.5ms to extract a global
feature when MobileNetV2 is adopted as feature extrac-
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FEATURE TYPE BACKBONE # NUM. DIM. EXT. (ms) LAT. (s)

DELG [1] global ResNet101 1 2, 048 113.7 0.345
Token [9] global ResNet101 1 1, 024 141.3 0.143
CVNet [5] global ResNet101 1 2, 048 113.7 0.345
DOLG [11] global ResNet101 1 512 199.6 0.111
?DELF [1] local ResNet101 ≈ 1, 000 128 388.9 1.042
HOW [8] local ResNet50 ≈ 2, 000 128 258.1 0.995

Table 1. Various gallery features. # NUM.: the number of feature
per image; DIM.: feature dimension; EXT.: average latency for
feature extraction; LAT: average latency of a single retrieval in a
gallery set with 1 Million images. We perform feature extraction
and retrieval 100 times and report the average latency. All the
results are counted on a machine with a single thread GPU (RTX
2080Ti) and CPU (Intel Xeon CPU E5-2640 v4 @ 2.40GHz).

QUERY

NET φq

GALLERY

NET φg

FLOPS (G) PARAM. (MB)

ABS ‰ ABS ‰

Mixer Mixer 175.12 1000.0 202.34 1000.0

GhostNet

Mixer

1.36 7.76 4.64 22.9
ShuffleNetV20.5× 0.84 1.96 2.44 5.74
MobileNetV20.5× 1.31 7.48 3.31 16.35
MobileNetV30.5× 0.66 3.76 2.11 10.42

ShuffleNetV2 1.44 8.22 3.35 16.56
MobileNetV3 1.82 10.39 4.94 24.41
MobileNetV2 2.50 14.27 4.85 23.97
EfficientNetB0 2.86 16.33 6.63 32.77
EfficientNetB1 3.92 9.15 9.13 21.49

Table 2. FLOPS and model size for lightweight models used in
this work, absolute (ABS) and relative (‰) to the gallery model.
All the models are modified slightly to adapt to image retrieval.
The FLOPS are calculated with a input image of 362× 362.

tor. Our method just deploys a lightweight model on the
query side to extract global features while deploying multi-
ple models on the gallery side for feature fusion. It advances
the existing asymmetric retrieval systems without introduc-
ing any extra overhead to the query side.
(3) Storage overhead. Typically, there are thousands of
local features in a single image, which greatly increases
the storage overhead of the gallery set. For example, for
R1M [6], it takes about 480G to store all the local features
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Figure 1. Performance vs. Number of iterations. Iterations demote the hyper-parameter C in the Eq. (10) of main paper. On the gallery
side, our method aggregates DELG [1], Token [9], DOLG [11] and CVNet [5] into compact embedding. Asymmetric: MobileNetv2 [4]
is deployed on the query side for feature extraction. Symmetric: feature fusion is also adopted for the query side, which leads to heavy
computational and storage overhead.
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Figure 2. Performance vs. inference FLOPS when varying the image size. Ours: MobileNetV2 [7] is adopted as query model and gallery
features are generated via aggregating DELG [1], Token [9], DOLG [11] and CVNet [5] into compact embedding with our proposed mixer.
Previous SOTA: The latest asymmetric retrieval method CSD [10] is adopted to train query model with just CVNet [5] deployed as gallery
model. Query features are extracted as the original single scale. The x-axis represents the average FLOPS (G) for five inferences, which is
proportional to input size. We resize the queries to {0.4, 0.6, 1/

√
2, 0.8, 1.0,

√
2} of the original size (1024× 768).

extracted by HOW [8]. Even being binarized, the inverted
index still takes up 14.2G of memory. While for the global
feature DELG [1], it only needs 7.7G to store all the gallery
features. In our method, multiple local and global features
are aggregated into compact embedding on the gallery side.
It exploits the complementarity of different features to en-
hance the discriminativeness of gallery features while en-
suring a small storage overhead, e.g., 7.7G for R1M.

2. Additional Ablation and Analysis

Impact of C in the Eq. (10) of main paper. The proposed
mixer dynamically extracts helpful features from various
gallery features via a learnable fusion token. In this section,
we explore the impact of different iteration numbers on the
retrieval accuracy. As shown in Fig. 1, retrieval accuracy in-
creases gradually as the number of iterations increases un-
der both asymmetric and symmetric settings. The results
show that helpful features are progressively aggregated to
form discriminative image representations.
Inference computational overhead. In previous experi-
ments, we follow the common setup to scale a test image
to different sizes and forward them through feature extrac-
tor multiple times to extract multi-scale feature. However,
multi-scale feature extraction notably increases the compu-
tational overhead for the query side. In this section, we
investigate the relationship between retrieval performance
and computational overhead. MobileNetV2 is deployed as

QUERY
NET

GALLERY
FEATURE

GLDv2-Test ROxf + 1M RPar + 1M

Private Public Medium Hard Medium Hard

MobileNetV30.5× Single 21.84 19.92 57.84 37.89 66.71 44.76
Mixed 26.19 23.43 62.91 42.28 68.29 46.97

MobileNetV3
Single 27.15 25.10 62.50 43.15 75.93 55.85
Mixed 29.34 26.58 68.71 46.87 79.85 62.42

ShuffleNetV20.5× Single 21.84 19.92 52.58 33.24 52.69 33.27
Mixed 26.19 23.43 62.79 43.61 71.87 51.60

ShuffleNetV2
Single 26.02 23.16 60.12 40.05 65.79 45.43
Mixed 28.76 25.64 68.38 48.92 75.92 56.82

MobileNetV20.5× Single 23.54 21.13 56.88 37.55 65.68 44.05
Mixed 25.79 23.50 64.41 43.53 74.89 54.97

MobileNetV2
Single 26.02 23.16 60.12 40.05 65.79 45.43
Mixed 29.85 27.68 70.47 49.16 80.01 62.58

EfficientNetB0
Single 27.45 25.32 65.63 42.52 74.69 55.04
Mixed 30.96 27.30 71.72 50.21 79.96 61.85

EfficientNetB1
Single 29.50 26.77 67.03 46.46 76.28 57.50
Mixed 31.52 27.98 72.44 51.56 81.80 63.97

GhostNet
Single 26.50 23.51 61.72 42.12 74.61 55.06
Mixed 28.45 25.84 65.57 45.39 79.11 61.19

Table 3. Analysis of different lightweight query model archi-
tectures. Mixed: Four global features including DELG [1], To-
ken [9], DOLG [11] and CVNet [5] are aggregated into compact
embedding on the gallery side. Query model and mixer are trained
jointly. Single: CVNet is deployed as gallery model and CSD [10]
is adopted to train the query model.

the query model and single-scale feature extraction is per-
formed. We scale test images to different sizes, which corre-
spond to different computational overhead (FLOPs), to ex-
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Figure 3. Performance vs. output dimension. On the gallery side, our method aggregates DELG [1], Token [9], DOLG [11] and CVNet [5]
into compact embedding. Asymmetric: MobileNetv2 [4] is deployed on the query side for feature extraction. Symmetric: Feature fusion is
also adopted for the query side. Previous Asym. SOTA: The latest asymmetric retrieval method CSD [10] is adopted to train query model
(MobileNetV2), whose output dimension is 2, 048, with CVNet [5] deployed as gallery model. The x-axis represents different output
dimension, which is associated with the storage of the gallery set.

tract single-scale query features. As shown in Fig. 2, both
asymmetric and symmetric retrieval accuracy increases and
then saturates as inference computational complexity in-
creases. In some real-world applications, we need to scale
an image to an appropriate size for the trade-off between
retrieval accuracy and efficiency.
Different lightweight query models. In this section, vari-
ous lightweight models, with different computational com-
plexity and model size, are deployed as query models φq .
As shown in Tab. 3, when various lightweight models are
deployed as query model, our approach consistently ad-
vances the accuracy of asymmetric retrieval without intro-
ducing any additional overhead to the query side.
Output dimension. Since our method jointly trains the
mixer and query model, it is easy to adjust the dimension of
image feature. In the real-world retrieval system, there are
billions of images and large feature dimension leads to huge
storage overhead. In this section, we explore the impact of
different output dimension on retrieval accuracy. As shown
in Fig. 3, both asymmetric and symmetric retrieval accu-
racy increases gradually and then saturates as the dimension
increases. In practical scenarios, we should choose appro-
priate feature dimension to achieve the trade-off between
storage footprint and retrieval accuracy.
More details about generalizability analysis. In the main
paper, our asymmetric feature fusion is combined with var-
ious existing asymmetric retrieval methods. Here, we pro-
vide more implementation details, when it is combined with
CSD [10]. For an image, CSD aims to constrain the query
model to maintain its neighborhood structure in the embed-
ding space of the gallery model. It assumes that a well-
trained gallery model is adopted to embed the images of a
training gallery GT into features G ∈ RN×d. These fea-
tures are then adopted to mine neighbors of each training
image during the learning of query model.

However, in our approach, the gallery features keep
evolving with training. To approximate the fixed gallery
features G in CSD, we maintain a memory to store fea-
tures from the immmediate preceding mini-batches, which

is denoted as G̃ ∈ RM×d. The introduction of the mem-
ory makes the size of training gallery much larger than
that of mini-batch, which provides sufficient neighbors for
each training image. Similar to MOCO [3], the features
in the memory are progressively replaced, following the
first-in-first-out principle. To improve the consistency of
features in the memory, we also follow MOCO to main-
tain a momentum-updated version of mixer (φ̃mix) to aggre-
gate multiple gallery features into more smooth embedding
g̃mix, which is stored in the memory. During query model
training, for each training image, we mine its neighbors just
in the memory with the embedding generated by φ̃mix. The
final objective function consists of two losses. One is Arc-
Face loss [2] (Eq. (11) in the main paper) for training mixer,
the other is contextual similarity consistency loss defined in
CSD, with the modifications mentioned above.
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Avrithis, and Ondřej Chum. Revisiting oxford and paris:
Large-scale image retrieval benchmarking. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5706–5715, 2018. 1

[7] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. MobileNetv2: Inverted
residuals and linear bottlenecks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), 2018. 2

[8] Giorgos Tolias, Tomas Jenicek, and Ondřej Chum. Learn-
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