
Bidirectional Cross-Modal Knowledge Exploration for Video Recognition
with Pre-trained Vision-Language Models

Supplementary Material

Wenhao Wu1,2 Xiaohan Wang3 Haipeng Luo4 Jingdong Wang2 Yi Yang3 Wanli Ouyang5,1

1The University of Sydney 2Baidu Inc. 3Zhejiang University
4University of Chinese Academy of Sciences 5Shanghai AI Laboratory

whwu.ucas@gmail.com

In this appendix, we provide additional details and re-
sults for our approach. Specifically, §A contains further
details on the training process (§A.1), attributes branch
(§A.2), zero-shot evaluation (§A.3), statistics of video
datasets (§A.4), visual encoder architectures (§A.5), and
Distributed InfoNCE (§A.6). In §B, we present additional
results, including comparisons on UCF-101 and HMDB-51
(§B.1) and more visualizations (§B.2).

A. Implementation Details
A.1. Training details

Regular Video Recognition. We present our approach for
regular video recognition in Table A.1, sharing the same
training recipe for all video datasets, including Kinetics-
400, ActivityNet, Charades, HMDB-51, and UCF-101.
Few-shot Video Recognition. We repeat the samples to
maintain the same number of iterations as the regular coun-
terpart. For instance, if the model is trained on Kinetics-400
with around 900 iterations per epoch for the general setting,
we repeat the sample to maintain the same number of it-
erations for few-shot settings. We train few-shot models
for 2 epochs on Kinetics-400 and 10 epochs on other video
datasets, i.e., ActivityNet, HMDB-51, and UCF-101, while
keeping other settings the same as in Table A.1.
Zero-shot Video Recognition. We use the Kinetics-400
pre-trained models to perform cross-dataset recognition
without additional training on other datasets such as Ac-
tivityNet, HMDB-51, UCF-101, and Kinetics-600.

A.2. Attributes Branch

To improve the quality of auxiliary attributes, we pre-
generate them using CLIP ViT-L/14 with 8 frames. We em-
ploy the text encoder architecture of CLIP ViT-B/32 as our
attribute encoder. To integrate the Attributes branch with
the Video branch, we set λ to 0.6 for the Video branch with
ViT-B and λ to 0.8 for the Video branch with ViT-L.

Setting Value

Training Hyperparameter
Batch size 256
Vocabulary size 49408
Training epochs 30 (ViT-B), 20 (ViT-L)
Optimizer AdamW
Learning rate (Base) 5e-5, cosine
Learning rate (CLIP layers) 5e-6, cosine
Weight decay 0.2
Linear warm-up epochs 5
Adam β1,β2 0.9, 0.999

Augmentation
Resize RandomSizedCrop
Crop size 224 (Default)
Random Flip 0.5
Random Gray scale 0.2

Table A.1. Default training recipe for video recognition.

A.3. Evaluation Protocols for Zero-shot Recogni-
tion

We employ our Kinetics-400 pre-trained models to eval-
uate on other datasets. For UCF-101, HMDB-51, and Ac-
tivityNet, we adopt two major evaluation protocols as de-
scribed in [1]:

1. Half-Classes Evaluation: To ensure comparability
with previous works, we randomly select half of the
test dataset’s classes - 50 for UCF, 25 for HMDB, and
100 for ActivityNet - and evaluate on the selected sub-
set. We repeat this process ten times and average the
results for each test dataset. We refer to this setting as
UCF∗, HMDB∗ and ActivityNet∗.

2. Full-Classes Evaluation: This evaluation setting in-
volves directly evaluating on the full dataset to return
more realistic accuracy scores.



Embedding Input Vision Transformer Text Transformer
Model dimension resolution layers width heads layers width heads

ViT-B/32 512 224 12 768 12 12 512 8
ViT-B/16 512 224 12 768 12 12 512 8
ViT-L/14 768 224 24 1024 16 12 768 12
ViT-L/14-336px 768 336 24 1024 16 12 768 12

Table A.2. CLIP-ViT hyperparameters

For Kinetics-600, we follow [3] to choose the 220 new
categories outside of Kinetics-400 in Kinetics-600 for eval-
uation. We use the three splits provided by [3] and sam-
ple 160 categories for evaluation from the 220 categories in
Kinetics-600 for each split. We report the mean accuracy of
the three splits as the final accuracy.

A.4. Statistics of Video Datasets

We describe the video datasets used in our experiments:
Kinetics-400 is a large-scale video dataset that includes
240,000 training videos and 20,000 validation videos across
400 different human action categories. Each video in the
dataset is a 10-second clip of an action moment, annotated
from raw YouTube videos.
Kinetics-600 is an extension of Kinetics-400, consisting of
approximately 480,000 videos from 600 action categories.
The videos are divided into 390,000 for training, 30,000 for
validation, and 60,000 for testing. In this paper, we use its
test set for zero-shot evaluation.
UCF-101 is an action recognition dataset that contains
13,320 videos from 101 realistic action categories, collected
from YouTube.
HMDB-51 is a collection of realistic videos from various
sources, including movies and web videos. The dataset
comprises 7,000 video clips from 51 action categories.
ActivityNet-v1.3 is a large-scale untrimmed video bench-
mark that contains 19,994 untrimmed videos of 5 to 10 min-
utes from 200 activity categories.
Charades is a video dataset designed for action recognition
and localization tasks. It contains over 10,000 short video
clips of people performing daily activities, and consists of
157 action categories.

A.5. Encoder Architectures

In this paper, we provide the complete architecture de-
tails of the visual encoder and textual encoders. The CLIP-
ViT architectures are shown in Table A.2.

A.6. Distributed InfoNCE

Instead of Data-Parallel Training (DP), which is single-
process, multi-thread, and only works on a single ma-
chine, Distributed Data-Parallel Training (DDP) is a widely
adopted single-program multiple-data training paradigm for

single- and multi-machine training. Due to GIL contention
across threads, per-iteration replicated model, and addi-
tional overhead introduced by scattering inputs and gath-
ering outputs, DP is usually slower than DDP even on a sin-
gle machine. Hence, we develop the Distributed InfoNCE
based on DDP for large batch size and fast training.

The core of the Distributed InfoNCE implementation is
batch gathering, which enables us to calculate the NM×NM
similarity matrix across M GPUs for InfoNCE loss. With-
out batch gathering, each GPU only computes a local N×N
matrix where N≪NM. This means that the cosine similar-
ity and the InfoNCE loss would only be calculated for the
pairs within a single GPU, and their gradients would be later
averaged and synced. That’s obviously not what we want.

The batch gathering technique allows each GPU to hold
N vision features and perform a matrix product with NM
text features, resulting in an N×NM matrix. This compu-
tation is distributed (i.e., sharded) across M GPUs, and we
have calculated NM×NM similarities across the GPUs in
total. The loss we employ is symmetric, and the same pro-
cess is applied w.r.t. text inputs. Algorithm 1 provides an
example pseudocode to help understand the process.

B. More Results
B.1. Comparisons on UCF-101 and HMDB-51

In this section, we evaluate the performance of our
method on the UCF-101 and HMDB-51 datasets to demon-
strate its capacity for generalization to smaller datasets. We
finetune our models on these two datasets using the pre-
trained ViT-L model on Kinetics-400 and report the accu-
racy on split one. We use 16 frames as inputs and train
for 30 epochs. Table A.3 shows that our model has strong
transferability, achieving a mean class accuracy of 98.8%
on UCF-101 and 83.1% on HMDB-51.

B.2. More Qualitative Results

We present additional visualizations of the Temporal
Saliency generated by our Video Concept Spotting mech-
anism in Figure A.1. In Figure A.2, we also showcase more
visualizations of the Generated Attributes produced by our
Video-Attribute Association mechanism using two different
lexicons.



Video: parasailing

0.3656 0.1931 0.2740 0.1673

Video: pushing cart

0.0066 0.2181 0.4688 0.3065

Video: long jump

0.1193 0.1310 0.1344 0.6153

Video: riding elephant

0.2499 0.0300 0.4792 0.2409

Video: riding mule

0.1853 0.3588 0.4509 0.0051

Video: surfing water

0.1581 0.1610 0.0816 0.5993

Video: playing piano

0.4637 0.3343 0.1816 0.0204

Video: javelin throw

0.0609 0.5271 0.2933 0.1187

Figure A.1. Visualization of temporal saliency from our Video Concept Spotting mechanism. Please zoom in for best view.

+ Attributes
This is a video about exercising with an exercise
ball, juggling balls, dribbling basketball.

balloon blowing

exercising with
an exercise ball

Prediction

+ Attributes tobogganing

Prediction

water sliding

This is a video about bobsledding, tobogganing,
sled dog racing.

+ Attributes kissing

hugging

Prediction

This is a video about crawling baby, kissing,
headbutting.

Prediction

making sushi

cooking
chicken

+ Attributes This is a video about making sushi, dining,
setting table.

riding a bike

motorcycling

Prediction

+ Attributes This is a video about riding mountain bike,
biking through snow, riding a bike.

+ Attributes petting cat

massaging
person’s head

Prediction

This is a video about headbutting, petting cat,
massaging back.

(a) Generated attributes from Kinetics-400 lexicon.

pumping gas

pushing car

Prediction
folding napkins

setting table

Prediction

drinking shots

making tea

Prediction
windsurfing

sailing

Prediction

+ Attributes This is a video about minivan, station wagon,
limousine, car mirror. + Attributes This is a video about dining table, restaurant,

plate, handkerchief.

+ Attributes This is a video about mortar and pestle, 
teapot, tea cup, consomme. + Attributes This is a video about trimaran, sailboat,

catamaran, motorboat.
(b) Generated attributes from ImageNet-1K lexicon.

Figure A.2. Visualization of the attribute sentence generated by the Video-Attribute Association mechanism that corrected the original
incorrect prediction to the correct one.



Algorithm 1 Numpy-like Pseudocode of Distributed InfoNCE for our Video branch

1 # category_encoder: encoder network for category input
2 # video_encoder: encoder network for video input
3 # V: minibatch of video inputs
4 # T: minibatch of category inputs
5 # N: the local batch size of each GPU, e.g.,16
6 # M: the number of GPUs, e.g.,8
7 # N * M: the global batch size for multi-gpu training, e.g.,128
8

9 # extract feature representations of each modality
10 local_vision_features = video_encoder(V) # shape: [N, embed_dim]
11 local_text_features = category_encoder(T) # shape: [N, embed_dim]
12

13 # normalization
14 local_vision_features = l2_normalize(local_vision_features, axis=1)
15 local_text_features = l2_normalize(local_text_features, axis=1)
16

17 # batch_gather is a function gathering and concatenating the tensors across GPUs.
18 all_vision_features = batch_gather(local_vision_features) # shape: [N * M, embed_dim]
19 all_text_features = batch_gather(local_text_features) # shape: [N * M, embed_dim]
20

21 # scaled pairwise cosine similarities
22 # shape = [N, N * M]
23 logits_per_vision = logit_scale * local_vision_features @ all_text_features.t()
24 # shape = [N, N * M]
25 logits_per_text = logit_scale * local_text_features @ all_vision_features.t()
26

27 # The logits are then used as inputs for N*M-way (e.g., 128-way) classification,
28 # resulting in a loss value corresponding to N inputs in each GPU.
29 # Then Distributed Data Parallel mechanism takes care of averaging these across GPUs,
30 # which becomes equivalent to calculating the loss over NMxNM (e.g.,128x128) similarities.
31

Method UCF-101 HMDB-51

ARTNet [7] 94.3% 70.9%
I3D [2] 95.6% 74.8%
R(2+1)D [6] 96.8% 74.5%
S3D-G [10] 96.8% 75.9%
TSM [5] 95.9% 73.5%
STM [4] 96.2% 72.2%
MVFNet [9] 96.6% 75.7%
TDN [8] 97.4% 76.4%

Ours ViT-L 98.8% 82.2%
Ours ViT-L (336↑) 98.6% 83.1%

Table A.3. Top-1 accuracy on UCF-101 and HMDB-51 achieved
by different methods which are transferred from their Kinetics
Pre-trained models with RGB modality.

References
[1] Biagio Brattoli, Joseph Tighe, Fedor Zhdanov, Pietro Per-

ona, and Krzysztof Chalupka. Rethinking zero-shot video
classification: End-to-end training for realistic applications.
In CVPR, pages 4613–4623, 2020. 1

[2] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In CVPR,

2017. 4
[3] Shizhe Chen and Dong Huang. Elaborative rehearsal for

zero-shot action recognition. In ICCV, pages 13638–13647,
2021. 2

[4] Boyuan Jiang, MengMeng Wang, Weihao Gan, Wei Wu, and
Junjie Yan. Stm: Spatiotemporal and motion encoding for
action recognition. In ICCV, pages 2000–2009, 2019. 4

[5] Ji Lin, Chuang Gan, and Song Han. Tsm: Temporal shift
module for efficient video understanding. In ICCV, 2019. 4

[6] Du Tran, Heng Wang, Lorenzo Torresani, Jamie Ray, Yann
LeCun, and Manohar Paluri. A closer look at spatiotemporal
convolutions for action recognition. In CVPR, 2018. 4

[7] Limin Wang, Wei Li, Wen Li, and Luc Van Gool.
Appearance-and-relation networks for video classification.
In CVPR, 2018. 4

[8] Limin Wang, Zhan Tong, Bin Ji, and Gangshan Wu. Tdn:
Temporal difference networks for efficient action recogni-
tion. In CVPR, pages 1895–1904, 2021. 4

[9] Wenhao Wu, Dongliang He, Tianwei Lin, Fu Li, Chuang
Gan, and Errui Ding. Mvfnet: Multi-view fusion network
for efficient video recognition. In AAAI, 2021. 4

[10] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and
Kevin Murphy. Rethinking spatiotemporal feature learning:
Speed-accuracy trade-offs in video classification. In ECCV,
2018. 4


	. Implementation Details
	. Training details
	. Attributes Branch
	. Evaluation Protocols for Zero-shot Recognition
	. Statistics of Video Datasets
	. Encoder Architectures
	. Distributed InfoNCE

	. More Results
	. Comparisons on UCF-101 and HMDB-51
	. More Qualitative Results


