
Supplementary Material:
Boosting Detection in Crowd Analysis via Underutilized Output Features

A. Detailed Evaluation Metrics

Crowd Counting Mean Absolute Error (MAE) and Root
Mean Squared Error (RMSE) are widely used as counting
metrics, and they are defined as follows:
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Here, ei and gti represent the estimated count and ground
truth count of crowds, respectively, and N is the total num-
ber of images.

Crowd Localization F1 Measure, Precision, and Recall
are commonly used as metrics for crowd localization, as
proposed in [4]. We denote the two point sets of prediction
results as Pp and ground truth as Pg , and construct a Bipar-
tite Graph Gp,s for the two sets. Then, we compute the dis-
tance matrix of Pp and Pg . If the distance between pp ∈ Pp

and pg ∈ Pg is less than a predefined distance threshold σ,
we consider pp and pg to be successfully matched, and ob-
tain a boolean match matrix (True and False denote matched
and non-matched) corresponding to each element of the dis-
tance matrix. Finally, by implementing the Hungarian algo-
rithm, we obtain a Maximum Bipartite Matching for Gp,s.
Based on the counts of True Positive (TP), False Positive
(FP), and False Negative (FN), we can compute Precision
(P), Recall (R), and F1 Measure (F1) as follows:
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Crowd Detection Following standard practices, we
adopt the average precision (AP) as the detection metric,
with an Intersection over Union (IOU) threshold of 0.5.

B. Datasets
WIDER-Face [5] is a dense face detection dataset consist-
ing of 32,203 images and 393,703 face labels, which exhibit
high variability in terms of scale, pose, and occlusion.
ShanghaiTech [6] consists of two independent subsets, Part
A and Part B. Part A contains highly congested images col-
lected from the Internet, while Part B is comprised of im-
ages taken from the busy streets of metropolitan areas in
Shanghai.
UCF-QNRF [1] contains 1535 images, which exhibit a
much wider range of crowd counts compared to the previ-
ous datasets, making it a more challenging dataset for crowd
analysis
JHU-Crowd++ [3] is a large-scale unconstrained dataset
that comprises a total of 4,372 images, containing 1,515,005
head annotations and captured under a variety of condi-
tions. The dataset includes challenging images captured
under various weather-based degradation, as well as some
negative samples that may be detected as false positives.
NWPU-Crowd [4] is the largest crowd analysis dataset,
consisting of 5,109 images and 2,133,375 annotated heads
with varying crowd densities. For an authentic evaluation of
crowd counting and localization, we report our results from
the official website of NWPU-crowd.

C. Visualization of Compression
Figure 1 provides additional visualization of the 2D-

1D feature compression achieved by the PSDNN + Crowd
Hat. Heat map is adopted where 2D compression is on the
left and 1D compression is on the right.

D. Visualization of Detection
Figures 2 and 3 depict the detection results of SDNet

with and without our proposed Crowd Hat module. Fol-
lowing the practice in [2, 4], we use green boxes to indicate
true positives based on ground truth annotations, red boxes
for false negatives, and yellow boxes for false positives, for
better clarity.
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Figure 1. To visualize the 2D-1D feature compression, we present both the 2D compression matrices (on the left) and 1D distribution
vectors (to their right) for each output feature. In the 1D distribution vectors, we denote 0 at the top and 1 at the bottom. Additionally, we
include the original image in the leftmost column for reference. Zoom in for better visualization.
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Figure 2. Visualization of Detection in Low Density Crowd.
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Figure 3. Visualization of Detection in High Density Crowd.
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