
Supplementary Materials for CHMATCH: Contrastive Hierarchical Matching
and Robust Adaptive Threshold Boosted Semi-Supervised Learning

Jianlong Wu1, Haozhe Yang2, Tian Gan2∗, Ning Ding3, Feijun Jiang3, Liqiang Nie1∗
1 School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen)

2 School of Computer Science and Technology, Shandong University 3 Alibaba Group
jlwu1992@pku.edu.cn, sailist@outlook.com, gantian@sdu.edu.cn,

{yuji.dn, feijun.jiangfj}@alibaba-inc.com, nieliqiang@gmail.com

A. Detailed Experimental Settings
In Table 1, we presented the detailed settings of hyper-

parameters in our semi-supervised learning experiments.

B. Generalization Analysis
To evaluate the generalization ability of our propose

method, we conducted additional experiments under do-
main shift settings. We use the model trained on the CI-
FAR100 dataset under WRN-28-2 to test the results on the
sketch domain. The ImageNet-Sketch dataset consists of

∗Corresponding authors.

50,000 sketch images, 50 images for each of the 1,000
ImageNet classes. We selected the sketch images from
ImageNet-Sketch that belong to the overlapped categories
between CIFAR100 and ImageNet for testing. Note that one
category in CIFAR100 may correspond to several classes
in ImageNet. Specifically, 11, 950 images that belong to
62 categories of CIFAR100 are selected. The accuracy for
CHMatch, FlexMatch, and FixMatch are 15.55%, 12.31%,
and 8.75%, respectively. We can see that our method also
achieves much better results than these two strong base-
lines.

Table 1. Setting of parameters on various datasets.

Dataset CIFAR-10 STL-10 CIFAR-100 CIFAR-100 ImageNet

Model WRN-28-2 ResNet-18 WRN-28-2 WRN-28-8 ResNet-50

Batch Size 64 64 160

µ 7 7 4

Max proportion 0.95 0.8

Initial proportion 0.05

Dynamic duration 100

fishcpl:

fpl:

aquarium fish rayshark

aquarium fish raycattle

dinosaurflatfish

crocodileturtle

turtle

lizardcrocodile

crocodile lizard

turtle

reptiles

Figure 1. Predicted results of fine-grained and coarse-grained classifications. ’cpy’, y, and ’fpl’ correspond to coarse-grained pseudo
label, ground-truth label, and fine-grained pseudo label, respectively. The misclassified fine-grained pseudo-label can be corrected by
coarse-grained pseudo-label in graph construction.



Table 2. Precision, Recall, F1-score comparison on CIFAR-100 with 400 labeled samples.

Model WRN-28-2 WRN-28-8

Criteria Precision Recall F1-score Precision Recall F1-score

FixMatch 0.5177 0.4574 0.4129 0.5615 0.54 0.4983

FlexMatch 0.4914 0.4991 0.4886 0.5930 0.6027 0.5931

CHMatch 0.5585 0.5536 0.5497 0.6641 0.6557 0.6541

Table 3. Class-wise accuracy comparison on CIFAR-10 40-label split.

Class Number 0 1 2 3 4 5 6 7 8 9

FixMatch 0.964 0.982 0.697 0.852 0.974 0.890 0.987 0.970 0.982 0.981
FlexMatch 0.967 0.980 0.921 0.866 0.957 0.883 0.988 0.975 0.982 0.968
CHMatch 0.975 0.978 0.890 0.876 0.966 0.871 0.985 0.971 0.982 0.981

C. Graph Matching Examples

As illustrated in Section 3.4, our graph matching strat-
egy can learn an accurate affinity graph by taking advantage
of coarse pseudo label graph to correct the fine pseudo la-
bel graph. Specifically, when there are many indistinguish-
able super classes, two samples might have the same fine-
grained pseudo-label, but their coarse-grained pseudo-label
are different. We show some real cases in Figure 1. We
can see that both the fourth and fifth images are predicted
as ’turtle’ since they are very similar, while the fourth im-
age is misclassified. However, they have different coarse
pseudo labels. In this case, by our graph matching strategy,
they will not be regarded as the positive pairs to guide the
contrastive learning, which can well demonstrate the effect
of our graph matching strategy.

D. Computational Analysis of the memory-
bank based threshold learning

For the threshold computation in step 10 of the Algo-
rithm 1, its time cost can be neglectable. Specifically, we
use the function ”torch.topk” in PyTorch library to select
the K% largest values from the memory bank to compute
the threshold. The computational complexity for this op-
eration is O(n + t), where t = n ∗ K%, and n denotes
the size of the memory bank. In our experiments, we set
n = 50, 000, and it only needs 2.6ms for each minibatch
to compute the threshold. Moreover, this operation in our
method is irrelevant to the dataset.

In comparison, FlexMatch needs the predicted probabil-
ity of the whole dataset to compute the threshold for each
category by the “counter” function, whose computational
complexity is O(m + c), where m and c denote the num-
ber of training samples and classes, respectively. Since m
is generally larger than n, its computational complexity is

Figure 2. The class-wise accuracy convergence curve on CIFAR-
10 with 40 labels.

higher than ours. Specifically, it generally needs 2.66ms on
CIFAR and 109ms on ImageNet to execute this function.
For the whole training, it costs extra 0.7, and 31.7 hours for
such an operation on these two datasets.

E. Detailed Results under Other Evaluation
Metrics

To comprehensively evaluate the performance under var-
ious metrics, we further reported the Precision, Recall, and
F1-score on CIFAR-100 with 400 labels samples under two
different backbones. As shown in Table 2, CHMatch also
achieves the best performance under these metrics.

F. Class-wise Accuracy Comparison
Table 3 shows a detailed class-wise accuracy compari-

son on CIFAR-10. Even without assigning class-specific
threshold as FlexMatch does, we still achieved competitive
results on those hard-to-learn classes.

Figure 2 shows the smooth growth of the accuracy of our
method for each category during the training on the CIFAR-



(a) Coarse-grained category accuracy (b) Sub-category accuracy for each 

coarse-grained category

Figure 3. Accuracy of each category on CIFAR-100.

(a) First fine-grained class accuracy (b) Coarse-grained class accuracy

Figure 4. The convergence curves for selected classes on CIFAR-100.

10 dataset.
We also presented the class-wise accuracy on CIFAR-

100, which is shown in Figures 3 and 4. We can see that
the coarse-grained classification accuracy is higher than the
fine-grained results, which can provide useful information
for guidance and correctness. Besides, according to Fig-
ure 4, our method can converge very fast and is very stable.

G. The Construction of ImageNet subset and
visualization

The detailed construction process of the ImageNet subset
can be summarized as follows:

• Step 1: The categories of the ImageNet dataset have

a tree structure. We iterate through all non-leaf nodes
starting from the root node, and record the number of
leaf nodes they cover on all non-leaf nodes.

• Step 2: Delete all non-leaf nodes that cover the num-
ber of leaf nodes greater than K (In the operation, we
set K=112). These deleted non-leaf nodes have coarse
granularity.

• Step 3: Delete all non-leaf nodes that have less than 10
leaf nodes.

• Step 4: Delete all non-leaf nodes whose children con-
tain non-leaf nodes to ensure that all non-leaf nodes do
not overlap.



Figure 5. Visualization of the balanced ImageNet dataset. Each row corresponds to one coarse-grained category with 10 fine-grained
categories, where each fine-grained category has two images for visualization.

• Step 5: Sort these non-leaf nodes in alphabetical order
based on category identity. Then take the top 20 non-
leaf nodes as the coarse-grained category.

• Step 6: Sort leaf nodes under these selected 20 non-
leaf nodes with the same rule. Then take the top 10
leaf nodes of each non-leaf node as their fine-grained
categories.

This process finally retains 200 leaf nodes and 20 non-
leaf nodes, where each leaf node corresponds to a category
in ImageNet1k and each non-leaf node corresponding to a
coarse-grained category. The number of 200 fine-grained
and 20 coarse-grained classes are set empirically. The code
for construction and detailed categories will be released af-
ter acceptance.

We also visualized the training classes of ImageNet ob-
tained by our algorithm in Figure 5. Each row corresponds
to one coarse-grained class, which contains 20 images from
10 different fine-grained classes.

H. Detailed compasion with CoMatch

CoMatch achieves very good performance for the task
of semi-supervised learning. Its main contributions lie in

two aspects: memory-smoothed pseudo labeling and graph-
based contrastive learning to learn better representation.

In comparison, our contributions and differences lie in
two aspects, including the memory-bank based dynamic
proportion strategy and hierarchical label based graph
matching. Both of these two mechanism are effective and
have not been studied in the field of semi-supervised learn-
ing. First, different from FixMatch and FlexMatch which
are based on a manually set threshold, our dynamic pro-
portion strategy can select the same number of samples
for training in different epochs for two independent exper-
iments and is more robust to parameters, leading to more
stable results. Second, our hierarchical labels based graph
matching can construct a more accurate affinity graph for
contrastive learning, contributing to more discriminative
feature representation and better performance. We need to
mention that our graph matching strategy is significantly
different from that in CoMatch. On the one hand, our
matching denotes the consistency between coarse-grained
graph and fine-grained graph to get more correct super-
vision information, while CoMatch computes a similarity
graph to constrain the feature representation. On the other
hand, the way to construct the graph is also different. Co-
Match adopts the similarity between probabilities to reg-



ularize the similarity between features. It also presents a
memory-smoothed pseudo-labeling strategy to use similar-
ity in feature space to update the probabilities in label space.
In this case, there are so many bidirectional interactions be-
tween features and probabilities and it cannot well solve the
issue claimed in CoMatch that “since the features are highly
correlated with the class predictions, the same types of er-
rors are likely to exist in both the feature space and the la-
bel space”. As a comparison, we directly use the one-hot
pseudo-label to construct the graph without the above com-
plex interactions, which can weaken the above issue.


