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Figure 1. Visualization of the Structure-Enhanced map.
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Figure 1. Visualization of the Structure-Enhanced map and Virtual OOD map based on the ID data (PASCAL VOC). For each feature map,
the channels corresponding to the maximum value are selected for visualization.

1. Further Discussion of the OOD Map

To reduce the impact of lacking unknown data for su-
pervision, we propose a method of cycle-consistent condi-
tional VAE to synthesize virtual OOD maps, which is ben-
eficial for improving the ability of distinguishing OOD ob-
jects from ID objects. Fig. 6 in the submitted paper and
Fig. 1 in the supplementary material separately show some
visualization examples from OOD data and ID data.

Compared with the Structure-Enhanced map, we can
see that the synthesized OOD map contains plentiful in-
formation that significantly deviates from the object-
related features. Since there is no OOD information avail-
able, to obtain sufficient OOD content, it is necessary to en-
large the gap between ID features and OOD features. To this
end, we separately define the loss Ldis and Lcycle. Mean-
while, we also insert the label into the latent space to force a
constrained representation, which is instrumental in further
enlarging the gap between ID and OOD features.

In the experiments, we separately evaluate our method
on OOD-OD, Open-Vocabulary Detection, and Incremental

Object Detection. The significant performance gains over
baselines indicate the effectiveness of our method.

2. Experimental Details of OVD and IOD
In this paper, to further demonstrate the effectiveness of

our method, we verify our method on other different tasks,
i.e., OVD and IOD. Here, we directly plug our method into
two baseline methods and do not calculate the uncertainty
loss. The training settings are the same as the baselines.

It is worth noting that to sufficiently exploit the synthe-
sized features, we train a binarized classifier, i.e., the output
of the known category is 1, and the output of the synthe-
sized features is 0. By minimizing the cross-entropy loss,
the discrimination ability of the object classifier could be
enhanced effectively.

3. Analysis of the LoG Operator
To improve the localization performance, we explore uti-

lizing the LoG algorithm to perform a convolution opera-
tion on the feature maps extracted by the backbone network,
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Figure 2. Comparisons between the Structure-Enhanced map and the Source map extracted by the backbone network. For each feature
map, the channels corresponding to the maximum value are selected for visualization.

which is beneficial for enhancing object-related information
in the extracted low-level features.

To further indicate the effectiveness of this operation, we
make a visualization analysis. Fig. 2 shows some visualiza-
tion examples. We can see that compared with the Source
map, by the LoG operation, the object-related information
in the new feature maps is much stronger. This indicates
that using the LoG operation is indeed helpful for purifying
object-related information and strengthening the ability of
object localization.

4. Ablation Analysis of Hyper-Parameters

For our method, we utilize the hyper-parameter α for the
loss Lin (Eq. (4)), hyper-parameter λ and τ for the loss L
(Eq. (8)). Since the uncertainty loss Luncertainty is directly
related to the current task, the value of τ should be set larger
than α and λ. Meanwhile, if α and λ are set to a small value,
the role of the two corresponding losses will be weakened
in optimization. Thus, it is meaningful to set proper values
for these hyper-parameters. Here, we take BDD-100k as
the ID data and MS-COCO as the OOD data to perform an
ablation analysis of hyper-parameters. And we only change
these hyper-parameters and keep other modules unchanged.

Analysis of α. The hyper-parameter α in Eq. (4) is to
balance the detection loss and the loss that aims to mini-
mize the KL-divergence between the prediction probabili-
ties from Ht and Pin. In the experiments, we observe that
when α is set to 0.01, 0.001, and 0.0001, the performance
of FPR95 is 33.12%, 32.23%, and 32.56%.

Analysis of λ. The goal of the hyper-parameter λ in
Eq. (8) is to weigh the importance of the module of cycle-
consistent conditional VAE. In the experiments, we find that
when λ is set to 0.01, 0.001, and 0.0001, the corresponding
FPR95 performance is 33.41%, 32.23%, and 33.04%.

Analysis of τ . The hyper-parameter τ in Eq. (8) is
to constrain the uncertainty loss Luncertainty. In the ex-
periments, we observe that when τ is set to 0.5, 0.1, and
0.01, the corresponding performance of FPR95 is 34.17%,
32.23%, and 32.76%. This shows that when the role of the
uncertainty loss is intensified, the performance of OOD ob-
ject detection will be decreased. The reason may be that
enlarging the uncertainty loss weakens the importance of
other losses, e.g., the detection loss.

5. More Visualization Analysis
In Fig. 3, we show more visualization examples of our

method. We can see that the structure-enhanced maps in-
deed contain plentiful object-related information, which is
beneficial for improving the performance of object local-
ization. Meanwhile, the synthesized virtual OOD maps in-
volve rich information that deviates from the object-related
contents, which is instrumental in improving the ability of
distinguishing OOD objects.

Finally, in Fig. 4 and 5, we show more detection results
about OOD objects and ID objects. We can see that for these
images, our method could accurately distinguish OOD ob-
jects from ID objects, which further demonstrates that our
method could indeed enhance the discrimination ability.
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Figure 3. Visualization of the Structure-Enhanced map and Virtual OOD map based on the OOD data (MS-COCO). For each feature map,
the channels corresponding to the maximum value are selected for visualization.



Figure 4. Detection results on the OOD images from MS-COCO. We can see that our method detects OOD objects accurately, which
further demonstrates the effectiveness of our method.



Figure 5. Detection results on In-Distribution dataset, i.e., PASCAL VOC. We can see that our method effectively detects objects in these
images, which shows the advantages of our method.
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