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In this supplementary material, we provide the additional
implementation details, pseudocode, overall pipeline, addi-
tional ablation study and qualitative visualization. Sec. A
shows the PyTorch-like pseudocode of the proposed adap-
tive spatial-attention dropout (ASAD). Sec. B details the
proposed VOS baseline with the ViT backbone. Sec. C il-
lustrates the implementation details in both pre-training and
downstream fine-tuning stages. More ablation studies are
conducted in Sec. D. Sec. E shows the qualitative visu-
alization of downstream VOT and VOS results, the video
reconstruction results of our DropMAE and the additional
quantitative VOS results. We finally discuss the limitation
and future work of our DropMAE in Sec. F.

A. Algorithm
We show the pseudocode of our proposed adaptive

spatial-attention dropout (ASAD) in Algorithm 1. As can be
seen, the implementation is simple and neat, which could be
flexibility incorporated into existing approaches like MAE
[5]. The implementation mainly consists of three steps: 1)
the calculation of temporal matching probability f tem; 2)
the calculation of spatially normalized within-frame atten-
tion A spa; 3) sampling for dropout from a multinomial dis-
tribution. Our code and pre-trained models will be publicly
available once the paper is published.

B. VOS Baseline
Since there is no ViT-based VOS approach, we build

a simple and effective ViT-based VOS baseline, namely
DropSeg, in order to demonstrate the effectiveness of our
DropMAE pre-training in VOS.
Architecture. The overall pipeline of our DropSeg is
shown in Fig. 1, which mainly consists of the pre-trained

*Corresponding Author

Algorithm 1: ASAD Pseudocode, PyTorch-like
# Input: attention matrix A, sequence
length N, drop number Nd

W = torch.zeros like(A) # N-by-N
A = A.detach().softmax(dim=-1)) # N-by-N

# get temporal attentions in each row of A
A tem = temporal index(A) # N-by-N//2
f tem = A tem.max(dim=-1).values # N-by-1

# get spatial attentions in each row of A
A spa = spatial index(A) # N-by-N//2
# avoid self-attention dropout
A spa[0:N//2, 0:N//2].fill diagonal (0)
A spa[N//2:, 0:N//2].fill diagonal (0)
A spa=A spa/A spa.sum(dim=-1, keepdim=True)

# calculate overall dropout probability
f all = f tem * A spa # N-by-N//2

# put back to probability matrix W
W[0:N//2, 0:N//2] = f all[0:N//2, 0:N//2]
W[N//2:, N//2:] = f all[N//2:, 0:N//2]
# sample Nd elements based on W

indices=torch.multinomial(W.view(1,-1),Nd)
return indices

ViT backbone and the mask prediction head. Note that
the frame identity embeddings are two randomly initialized
learnable vectors. We use the standard ViT-B/16 model [4]
as the backbone and initialized it with our DropMAE pre-
trained model, and the same decoder used in [3, 11] is em-
ployed. Since the decoder requires multi-resolution features
for mask prediction, we follow [10] to upsample the up-
dated search features to 2× and 4× sizes via two deconvo-
lutional modules.
Fine-tuning. During the fine-tuning stage, given a video,
we randomly sample a template frame with the mask anno-
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Figure 1. An overall pipeline of the proposed DropSeg for VOS.
iden and pos indicate frame identity embeddings and positional
embeddings, respectively. Our DropSeg with the DropMAE pre-
trained model sets new state-of-the-art one-shot segmentation re-
sults on the DAVIS-16 [12] and DAVIS-17 [13] datasets.

Config Value
optimizer AdamW [8]

base learning rate 1.5e-4
weight decay 0.05

optimizer momentum β1, β2 = 0.9, 0.95 [2]
batch size 4096

learning rate schedule cosine decay
warmup epochs 40
augmentation RandomResizedCrop

dropout ratio p 0.1
maximum sampling frame gap 50

Table 1. The pre-training setting for DropMAE.

tation, and a search frame of a training video within a prede-
fined maximum frame gap (i.e., 25). Following the conven-
tion [11], DAVIS-17 [13] and YouTube-19 [16] datasets are
used for training. The detailed training hyper-parameters
are in Table 3. We use the same bootstrapped cross entropy
loss in [3, 11] for supervision.

C. Implementation Details
In this section, we detail the implementation details

of our DropMAE pre-training, and fine-tuning details of
downstream VOT and VOS tasks.

C.1. DropMAE Pre-Training

We use the standard ViT-B/16 [4] as our backbone for
pre-training. The detailed pre-training hyper-parameters are
in Table 1, which mainly follows the training settings used
in the original MAE [5]. For the dropout ratio P , we set

Config Value
optimizer AdamW [8]

learning rate in head 2.5e-4
learning rate in backbone 2.5e-5

weight decay 0.0001
droppath rate 0.1

batch size 128
epoch 300

learning rate decay epoch 240
learning rate decay factor 10

learning rate schedule steplr
maximum sampling frame gap 200

Table 2. The fine-tuning setting for DropTrack.

Config Value
optimizer AdamW [8]

base learning rate 2e-5
weight decay 1e-7
droppath rate 0.1

batch size 32
Iterations 210,000

learning rate decay iteration 125,000
learning rate schedule steplr

maximum sampling frame gap 25

Table 3. The fine-tuning setting for DropSeg.

P = 0.1 following the ablation study in Sec. 6 of the main
paper. The pre-training is conducted on 64 NVIDIA V100
GPUs. As illustrated in Table 1 of the main paper, the 1600-
epoch pre-training takes about 84 hours on the K400 dataset
[7]. The whole training time can be further reduced to 58
hours by using 64 NVIDIA A100 GPUs.

C.2. Downstream VOT Fine-Tuning

Following the tracking baseline OSTrack [17], we use
the template and search sizes of 192 × 192 and 384 × 384
pixels, respectively, and fine-tune our DropMAE model
with the tracking specific data (see Sec. 4.1 of the main
paper) on 4 NVIDIA A100 GPUs. The candidate elimi-
nation module proposed in OSTrack are also used for a fair
comparison. For the full 300-epoch fine-tuning, the detailed
hyper-parameters are in Table 2. For fine-tuning on GOT-
10k [6], the total training epoch is reduced to 100 and the
learning rate decays at 80 epoch. The inference speed of our
DropTrack is the same as the baseline OSTrack [17], which
is 58.1 FPS measured on a single GPU.

C.3. Downstream VOS Fine-Tuning

The detailed fine-tuning setting of DropSeg is shown in
Table 3. We use 8 A100 GPUs for fine-tuning, and the
whole training takes about 16 hours. The inference speed
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Figure 2. Qualitative tracking results of our DropTrack and state-of-the-art tracking methods, including OSTrack [17], Ocean [18]
and SiamRPN++ [9]. The six video sequences are collected from TNL2K [15] (from top to down are SportGirl video 01 done,
test 031 IronMan transform 05 done, Monkey BBC video 01-Done, ZhuoQiu video 02-Done, INF crow1 and Zhizhuxia 09-Done, re-
spectively). The frame number is shown in the top-left of each frame.

of DropSeg is about 10 FPS, which is measured on a single
A100 GPU.

D. Additional Ablation Studies
In this section, we provide additional ablation studies on

parameter selection and effectiveness analysis. We use the
model pre-trained on K400 with 400 epochs for the ablation
study.
Effect of maximum sampling frame gap. During the
pre-training, we randomly sample two frames of a train-
ing video with a predefined maximal sampling frame gap
g. Here, we study its effect on the downstream VOT task.
As shown in Table. 4, the VOT task benefits more from
the large sampling frame gap, i.e., 50. This is because the
stronger temporal matching ability can be learned by using
the relatively large sampling frame gap. Since the limited
performance improvements from g = 10 to g = 50, we di-
rectly use g = 50 for all the pre-training experiments with-
out further searching for the parameters.
Learning static frame representation from K400. To
demonstrate the temporal correspondence learning in the
pre-training is the key to the success of downstream track-

Maximum Sampling Frame Gap GOT-10k
AUC SR0.5 SR0.75

1 72.2 82.7 65.7
10 72.8 83.4 67.2
50 73.2 83.9 67.5

Table 4. The effect of maximum sampling frame gap on the down-
stream tracking task.

Methods GOT-10k
AUC SR0.5 SR0.75

DropMAE 73.2 83.9 67.5
MAE-K400-static 70.4 80.7 65.6

Table 5. The comparison between DropMAE and MAE-K400-
static on GOT-10k [6].

ing tasks, we treat K400 [7] as a static image dataset and
perform the original MAE pre-training on it. We denote this
baseline as MAE-K400-static. Specifically, in each training
iteration, one frame image is randomly sampled of a video
for masked autoencoding pre-training. To make a fair com-
parison with our DropMAE, we double the video number
in this baseline such that the total sampled frame number in
one epoch training is the same as DropMAE. The compari-
son between MAE-K400-static and DropMAE is shown in
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Figure 3. Qualitative results of our one-shot approach DropSeg on seven sequences in DAVIS-17 [13], which are respectively bike-packing,
bmx-trees, camel, breakdance, car-shadow, india and soapbox. The frame number is shown in the top-left of each frame, and the ground-
truth mask annotation is given in the first frame. Our DropSeg shows favorable segmentation results without using complicated designs
such as online fine-tuning and memory mechanisms.

Figure 4. Video frame reconstruction results of DropMAE on K400 validation set. We show the original input frame pairs, masked frame
pairs (i.e., with 75% mask ratio) and reconstruction results, sequentially.



Method #Mem Static BL30K DAVIS-17 YouTubeVOS-19 val
J&F J F J&F Js Fs Ju Fu

XMEM ∼27 ✓ ✓ 87.7 84.0 91.4 85.8 84.8 89.2 80.3 88.8
STCN 27 ✓ ✓ 85.3 82.0 88.6 84.2 82.6 87.0 79.4 87.7

XMEM ∼27 ✓ 86.2 82.9 89.5 85.5 84.3 88.6 80.3 88.6
STCN 27 ✓ 85.4 82.2 88.6 82.7 81.1 85.4 78.2 85.9
SWEM 27 ✓ 84.3 81.2 87.4 82.6 82.0 86.1 77.2 85.2

DropSeg+ 2 ✓ 86.5 83.5 89.5 83.4 82.9 87.3 77.7 85.6
STCN− 27 82.5 79.3 85.7 - - - - -
DropSeg 1 83.0 80.2 85.7 - - - - -

Table 6. ‘Static’ and ‘BL30K’ indicate pre-training with static images and large-scale video BL30K. #Mem is the estimated number of
memory frames, which is measured w/ the avg. video length in YouTubeVOS-19.

Methods GOT-10k
AUC SR0.5 SR0.75

DropMAE 73.2 83.9 67.5
RandDrop-MAE 71.7 82.4 66.2

Table 7. The comparison between DropMAE and RandDrop-
MAE on GOT-10k [6].

Table 5. As can be seen, without temporal correspondence
learning, MAE-K400-static is significantly worse than our
DropMAE, which further demonstrates the effectiveness of
the temporal correspondence learning in the DropMAE pre-
training.
Random dropout. The vanilla ViT [4] implements dropout
[14] in each multi-head self-attention layer. To see whether
this random dropout works in our masked autoencoding
pre-training setting, we build a baseline called RandDrop-
MAE, which adopts the random dropout in each self-
attention layer of the decoder during the pre-training. Dif-
ferent from our adaptive dropout strategy (i.e., ASAD),
RandDrop-MAE randomly drops between-frame or within-
frame attentions. For a fair comparison, we use the same
dropout ratio (i.e., 0.1) for RandDrop-MAE. As shown in
Table 7, RandDrop-MAE degrades the performance com-
pared with our DropMAE. We believe this is because the
random dropout may excessively drop some attention ele-
ments that are essential for reconstruction and thus degrade
the learning.
Pre-trained MAE. The downstream VOT and VOS tasks
consist of large amounts of objects with diverse classes for
evaluation. Considering that K400 is composed of human-
action videos, there still exists domain gap between the pre-
training and fine-tuning stages. In order to alleviate this gap,
we use the original MAE trained on ImageNet as the pre-
training weights of our DropMAE, and then we further pre-
train our DropMAE on K400 for temporal correspondence
learning. From Table 8, we can find that our DropMAE
benefits from the pre-trained MAE on both VOT and VOS
tasks, which is mainly because the diverse object classes
learned in MAE are beneficial for generic object tracking

Pre-trained MAE GOT-10k Davis-17
AUC SR0.5 SR0.75 J&F

w/o 73.2 83.9 67.5 81.3
w/ 75.2 85.4 71.5 82.6

Table 8. The ablation study on the usage of the pre-trained MAE
model for DropMAE pre-training.

and segmentation. This also shows the potential that the
better downstream performance can be achieved by using
the pre-trained MAE and larger video data sources (e.g.,
K700 [1]).

E. Qualitative Visualization
In this section, we show the qualitative results of our

DropTrack and DropSeg on the VOT and VOS tasks, re-
spectively.

E.1. Video Object Tracking

In Fig. 2, we show the qualitative tracking results ob-
tained by our DropTrack and the other 3 compared trackers.
The selected sequences contain various challenges includ-
ing significant appearance variation, background cluster, il-
lumination variation and similar objects. Our DropTrack
handles these challenges well due to the robust DropMAE
pre-trained model.

E.2. Video Object Segmentation

The qualitative visualization of our DropSeg is shown
in Fig. 3. Even without using online fine-tuning or com-
plicated memory mechanisms, our DropSeg can still pro-
vide accurate segmentation results in the following frames
by only using the mask annotation in the first frame, which
is mainly due to the favorable temporal matching ability
learned in the DropMAE pre-training.

E.3. Frame Reconstruction

We show the video frame reconstruction results obtained
by our DropMAE in Fig. 4. As can be seen, although less



spatial cues are leveraged in the reconstruction, our Drop-
MAE still achieves favorable reconstruction results by ex-
ploring temporal cues or between-frame patches.

E.4. Additional Comparison on VOS

In this subsection, we provide the additional compar-
isons on DAVIS-17 and YouTube-VOS 19 datasets, which
are illustrated in Table 6. DropSeg does not use online
memory mechanisms, so we have used short videos (e.g.,
DAVIS-16/17) to focus evaluation on the learned represen-
tations. To more fairly compare on the longer YouTube-
VOS videos, we employ an improved variant DropSeg+,
which 1) uses static images for video pre-training (as in
[3, 11]); 2) uses the first and previously predicted frames
as memory. In Tab. 6, although our DropSeg+ only uses 2
memory frames, it is better than STCN w/ static image pre-
training on DAVIS-17 & YouTube-19. DropSeg+ is compa-
rable to XMEM on DAVIS-17, but worse on YouTube-19,
which is mainly due to the lack of complex online memory
and BL30K pre-training.

F. Limitation and Future Work
Due to the limited object classes in video datasets (e.g.,

K400 [7] and K700 [1]), the pre-training video sources still
have large domain gap with the downstream VOT and VOS
tasks, which results in a sub-optimal pre-trained model. In
Table 8, we find that this gap can be alleviated by using the
pre-trained MAE model during the DropMAE pre-training.
In the future work, we will perform more large-scale Drop-
MAE pre-training (i.e., w/ the MAE pre-trained model) on
larger video sources in order to provide more robust pre-
trained models for VOT and VOS communities.
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