
Supplementary Materials for

GANHead: Towards Generative Animatable Neural Head Avatars

Sijing Wu1 Yichao Yan2∗ Yunhao Li1 Yuhao Cheng2

Wenhan Zhu2 Ke Gao3 Xiaobo Li3 Guangtao Zhai1,2∗

1Institute of Image Communication and Network Engineering, Shanghai Jiao Tong University
2MoE Key Lab of Artificial Intelligence, AI Institute, Shanghai Jiao Tong University

3Alibaba Group

{wusijing, yanyichao, lyhsjtu, chengyuhao, zhuwenhan823, zhaiguangtao}@sjtu.edu.cn

{gaoke.gao, xiaobo.lixb}@alibaba-inc.com

In the supplementary document, we first provide some

implementation details in Section 1, then show additional

qualitative and quantitative results in Section 2. Finally, the

limitations and broader impact are discussed in Section 3.

Please also refer to the accompanying video for more intu-

itive results.

1. Implementation Details

1.1. Network Architecture

Our model is primarily constructed by MLPs, and we use

PyTorch [8] to implement our model. Our model consists of

a canonical generation module that generates head avatars

in canonical space, and a deformation module that deforms

the generated avatars to target poses and expressions.

The canonical generation module consists of three net-

works: geometry network G, normal network N and texture

network T . G is built by a 3D feature generator followed by

an MLP conditioned by the generated feature similar to [1].

N and T have roughly the same structure, as shown in Fig.

1.

The deformation module is composed of the shape re-

moving network D followed by a MLP C that predicts the

pose bases, expression bases and LBS weights similar to

[13], as illustrated in Fig. 2

1.2. Data Processing

We use the textured scans in FaceVerse-Dataset [10] to

train our model. At the beginning, we flip the scans to face

forward and shift them to the origin, so that the scans are

right inside the [−1, 1]3 cube.

The training of our model requires accurate estimation of

FLAME [6] parameters for each scan. To this end, we ini-

tialize the FLAME parameters by inferencing the pretrained

DECA model [3], and then further optimize these parame-

2
5

6

2
5

6

2
5

6

2
5

6

2
5

6

2
5

6

2
5

6

2
5

6

xc, zdetail (128), fs (229) n, fn (256)

2
5

6

2
5

6

2
5

6

2
5

6

2
5

6

2
5

6

2
5

6

2
5

6xc, zcolor (256), f(485),

θ(15), ψ(50)
c

Normal Network

Texture Network

β

’

’

Figure 1. The architecture of N and T . Each block represents a

linear layer whose output dimension is specified inside the block.

The number in brackets indicate the length of the tensor.

ters based on mesh-to-scan distance and landmark loss. To

inference DECA and obtain 3D landmarks, we render the

textured scans from the front view using PyTorch3D [9].

The rendered RGB image is then used to detect 2D land-

marks using Dlib [4]. Then, we use the Pyrender library to

render depth map and then project the 2D landmarks to 3D

scans according to the depth to obtain 3D landmarks.

As described in the main paper, we train our model in

two stages. In the second stage, rendered multi-view im-

ages are required. As for the ground truth scans, we render

them from 9 views (0◦, 40◦, 80◦, · · ·) to 256 × 256 images

using PyTorch3D [9]. As for the coarse geometry obtained

in the first stage, we first extract meshes from the predicted

occupancy using MISE [7], and then calculate the 3D to

2D correspondence using the depth map rendered by Pyren-

der. We will release our code for research purposes, and for

more details please refer to our source code.

1

θ ψ

1
2

8

1
2

8

1
2

8

1
2

8

xc, β(100)

1
2

8

1
2

8

1
2

8

1
2

8
x’c

1
5

8

 (108), (50)

5

S
o

ft
m

ax

 (5)

x’c

Shape Removing Network

Network

Figure 2. The architecture of D and C. Each block represents a

linear layer whose output dimension is specified inside the block.

The number in brackets indicates the length of the tensor.

1.3. Training

Losses: We train our model in two stages. In the first stage,

we add two auxiliary losses Lbone and Lweight during the

first training epoch inspired by [1,2]. Thus, at the first epoch

of the stage one, the training loss is:

Lstage1 =Locc + λdLdeshape + λlLlbs + λrLreg+ (1)

λbLbone + λwLweight,

with

Lbone = BCE(G(xb, zshape), 1) (2)

Lweight = ∥Wjoint −W0∥
2

2
,

where Lbone ensures the 20 sampled points xb along the

4 bones (a virtual concept that is similar to human body

model) to be inside the surface, and BCE(·) denotes the

binary cross entropy loss. Lweight enforces the predicted

LBS weights of the joints Wjoint only relevant to their two

neighboring bones. (i.e., W0 is a vector that takes 1 for the

neighboring bones and 0 elsewhere). We take λd = 10,

λl = 0.2, λr = 10−3, λb = 1, λw = 10 and λp = λe =
500.

In the second stage, the weight of each loss function is

set as: λc = λn = λ = 1 and λr = 10−3.

Optimization: We initialize all three latent codes to zero,

and train our model using Adam optimizer [5] with learning

rate η = 10−3 for the first training stage and η = 2× 10−3

for the second stage, and β = (0.9, 0.999).

2. Additional Experimental Results

2.1. Head Avatar Generation Quality Comparison

As illustrated in the main paper, our model can gener-

ate diverse animatable head avatars with complete geometry

and realistic texture. Before our method, only i3DMM [12]

can achieve similar functions. In this section, we compare

our method to the SOTA method i3DMM in terms of the

quality of the generated head avatars qualitatively and quan-

titatively.

We randomly sample the latent codes of our model and

i3DMM respectively to generate diverse head avatars. The

geometry and texture of some generated head avatars are

shown in Fig. 4. Our model can generate head avatars with

more diverse hairstyles and better geometry and more real-

istic texture. Furthermore, our model can learn more more

complex geometry like collars.

To quantitatively evaluate the quality of the generated

avatars, we conduct a user study. We ask 10 volunteers

to assess the geometry and texture quality of the generated

head avatars respectively. We randomly select 30 samples

of each method (i.e. our method and i3DMM [12]), and

each sample is rendered to image in resolution 256 × 256
from three views. Geometry images and texture images are

rendered separately. Thus, each volunteer will score 120

images in all, which takes about 15 to 20 minutes. Before

the formal scoring, we show each volunteer five additional

images for training. In the formal scoring, the volunteers

are asked to score the results of three methods from 0 to 5

(0 is the worst and 5 is the best, specifically, 0 ∼ 1: ‘very

bad’, 1 ∼ 2: ‘bad’, 2 ∼ 3: ‘ordinary’, 3 ∼ 4: ‘good’,

4 ∼ 5: ‘very good’). As illustrated in Fig. 3, our method

outperforms the SOTA method in both aspects.

Texture Geometry
0

0.5

1

1.5

2

2.5

3

3.5

4

i3DMM Ours

Figure 3. User study results. The average geometry and texture

scores of our method are higher than those of the SOTA method.

O
u
r
s

i3
D

M
M

Figure 4. Head avatar generation comparison with SOTA method. We randomly sample the latent codes of our model and of i3DMM,

and exhibit some generated head avatars.

Figure 5. User study examples.

2.2. Additional Generation and Animation Results

We generate more neural head avatars, and then deform

them to the target expressions, as illustrated in Fig. 8.

2.3. Qualitative results on Multiface Dataset

Since there are only Asians in the FaceVerse-Dataset that

we used in the main paper, we also train our model on a sub-

set of Multiface dataset [11] (252 scans from 10 subjects)

which contains samples of other races. The shape code and

detail code sampling results are shown in Fig.6. Due to

the lack of geometry details of the meshes in the Multiface

dataset, the sampling results only have rough shape on the

hair region. Furthermore, We randomly sample the shape,

detail and color latent codes to generate head avatars, and

then deform them to the target poses and expressions con-

trolled by the given FLAME parameters, as shown in Fig.

7. The results demonstrate the generalization ability of our

method on different datasets and races.

3. Limitations and Broader Impacts

Limitations: While our method contributes towards build-

ing generative animatable head avatars with complete ge-

ometry and realistic texture, some challenges still remain.

First, the data distribution and quality generated by our

method depends on that of the training dataset. Since there

are only Asians in the FaceVerse-Dataset that we used to

z d
et

ai
l

z s
h

ap
e

Figure 6. Shape and detail latent codes sampling results on

Multiface dataset. When sampling the shape code, the detail code

is set to the average value, and vice versa.

Figure 7. Head avatars generation and animation on Multiface

dataset.

train our model, our model can only generate Asians. When

trained on the Multiface dataset, our model can only gener-

ate avatars with only rough shape on the hair region due

to the lack of details in the training dataset. Future work

could address this by collecting a larger high-quality human

head scan dataset with a rich population. Second, although

our model can generate head avatars with realistic texture,

it cannot produce facial details like freckles and wrinkles.

More elaborate design of the 2D loss function in the second

training stage may help our model learn more details. Fi-

nally, how to model the internal structure of the mouth such

as teeth and tongue is still challenging.

Broader Social Impact: Our GANHead model can gener-

ate diverse novel realistic 3D head avatars, which is mean-

ingful for the coming meta verse and AAA games. For in-

stance, GANHead can help users create novel animatable

digital humans quickly and produce diverse digital humans

in the meta verse. Our method can also bring negative im-

pact. In the future, GANHead can be used to make com-

puter generated 3D human heads visually realistic and can

be misused to create fake face animation using Deepfake-

like technology. We heartily encourage future research to

study more in detecting computer generated head avatar

motions.

References

[1] Xu Chen, Tianjian Jiang, Jie Song, Jinlong Yang, Michael J

Black, Andreas Geiger, and Otmar Hilliges. gdna: To-

wards generative detailed neural avatars. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 20427±20437, 2022. 1, 2

[2] Xu Chen, Yufeng Zheng, Michael J Black, Otmar Hilliges,

and Andreas Geiger. Snarf: Differentiable forward skinning

for animating non-rigid neural implicit shapes. In Proceed-

ings of the IEEE/CVF International Conference on Com-

puter Vision, pages 11594±11604, 2021. 2

[3] Yao Feng, Haiwen Feng, Michael J Black, and Timo Bolkart.

Learning an animatable detailed 3d face model from in-

the-wild images. ACM Transactions on Graphics (ToG),

40(4):1±13, 2021. 1

[4] Davis E King. Dlib-ml: A machine learning toolkit.

The Journal of Machine Learning Research, 10:1755±1758,

2009. 1

[5] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 2

[6] Tianye Li, Timo Bolkart, Michael J Black, Hao Li, and Javier

Romero. Learning a model of facial shape and expression

from 4d scans. ACM Trans. Graph., 36(6):194±1, 2017. 1

[7] Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-

bastian Nowozin, and Andreas Geiger. Occupancy networks:

Learning 3d reconstruction in function space. In Proceedings

of the IEEE/CVF conference on computer vision and pattern

recognition, pages 4460±4470, 2019. 1

[8] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,

James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An im-

perative style, high-performance deep learning library. Ad-

vances in neural information processing systems, 32, 2019.

1

[9] Nikhila Ravi, Jeremy Reizenstein, David Novotny, Tay-

lor Gordon, Wan-Yen Lo, Justin Johnson, and Georgia

Gkioxari. Accelerating 3d deep learning with pytorch3d.

arXiv:2007.08501, 2020. 1

[10] Lizhen Wang, Zhiyuan Chen, Tao Yu, Chenguang Ma, Liang

Li, and Yebin Liu. Faceverse: a fine-grained and detail-

controllable 3d face morphable model from a hybrid dataset.

In Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition, pages 20333±20342, 2022.

1

[11] Cheng-hsin Wuu, Ningyuan Zheng, Scott Ardisson, Rohan

Bali, Danielle Belko, Eric Brockmeyer, Lucas Evans, Timo-

thy Godisart, Hyowon Ha, Alexander Hypes, Taylor Koska,

Steven Krenn, Stephen Lombardi, Xiaomin Luo, Kevyn

McPhail, Laura Millerschoen, Michal Perdoch, Mark Pitts,

Alexander Richard, Jason Saragih, Junko Saragih, Takaaki

Shiratori, Tomas Simon, Matt Stewart, Autumn Trimble,

Xinshuo Weng, David Whitewolf, Chenglei Wu, Shoou-I Yu,

and Yaser Sheikh. Multiface: A dataset for neural face ren-

dering. In arXiv, 2022. 3

[12] Tarun Yenamandra, Ayush Tewari, Florian Bernard, Hans-

Peter Seidel, Mohamed Elgharib, Daniel Cremers, and

Christian Theobalt. i3dmm: Deep implicit 3d morphable

model of human heads. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 12803±12813, 2021. 2

[13] Yufeng Zheng, Victoria FernÂandez Abrevaya, Marcel C

BÈuhler, Xu Chen, Michael J Black, and Otmar Hilliges. Im

avatar: Implicit morphable head avatars from videos. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 13545±13555, 2022. 1

Generated

Avatars

Target

Expressions

Figure 8. Head Avatar Generation and Animation. We randomly generate some neural head avatars, and then deform them to the target

expressions. We show texture and geometry of each sample, and we encourage readers to zoom-in for details.

