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6. Method Comparison and Implementation
We provide an overview of all the methods evaluated in

Sec. 4.2, including our adaptation to enable comparisons
among them in our experiments. As a brief recall, we com-
pare our method to two image-based methods, i.e. IMP [16]
and VGfM [2], and two point-based methods, 3DSSG [12]
and SGFN [14]. All methods shared a similar scene graph
generation pipeline:

1. using a node and an edge encode to compute an initial
node and edge embeddings.

2. using message passing to calculate messages for up-
dating node and edge features.

3. updating node and edge feature with the messages
from step 2.

4. integrating class prediction over time.

For all methods, we closely follow the original implementa-
tion from the respective papers. We refer interested readers
to check out their papers for all detail. Here, we describe
our adaptation to enable fair comparison in our experiments.
We report the comparison of all five methods in Tab. 6.

Object Detection. IMP and VGfM rely on a regional pro-
posal network to detect objects. We replace it with our en-
tity detection methods described in Sec. 3.1.2.

Geometric Features in VGfM. For VGfM, they extract
geometric features from ellipsoids. In our implementation,
we replace the use of ellipsoids with oriented bounding
boxes, which can provide equivalent information as needed
by VGfM.

Fusion for IMP. For IMP, as mentioned in the main pa-
per, we added the voting mechanism in [5] to fuse multi-
ple predictions. For handling the incremental nature, our
experiment in Table 1 follows the setup in [14]. We do a
single global estimation of all methods and provide incre-
mental estimations of our methods. Hence, no modification
is needed for all the baseline methods.

Entity visibility graph and the neighbour graph for the
GT setup Unlike in Dense and Sparse, where we run an
incremental estimation system to obtain Gc and Gp, the GT
requires an additional procedure to obtain the entity vis-
ibility graph Gc = (V,K, Ec) and the neighbour graph
Gp = (V, Ep). The entities V are directly inherited from
the ground truth annotation from the 3RScan dataset [11].
The proximity edges Ep is estimated with the same strategy
as described in Sec. 3.1.4, using the ground truth bound-
ing boxes of entities. Here we detail how we estimate K
and Ec for the GT setup. For K and Ec, we follow a sim-
ilar approach as in VGfM [2], where we first find all rel-
evant frames across all entities and then select keyframes
with our keyframe selection strategy (Sec. 7). We use the
ground truth instance mask from [11] to check if an entity
appears in an image. However, an entity may be heavily
occluded and cannot provide reasonable image features. To
avoid this, we estimate the occupancy of an entity in an im-
age as the ratio of the number of relevant pixels over all
pixels within the bounding box of the entity. Furthermore,
to prevent an entity is not aligned to the image coordinate,
which will cause the occupancy value to be very low even
if it is not occluded, we downscale each input mask by a
factor of 8 with a maximum relevant selection, i.e. a down-
scaled pixel is considered relevant if one among the eight
pixels in the original image is relevant. This gives the visi-
bility of each entity on each input frame. We then apply the
keyframe selection strategy to prevent duplicate views and
to ensure good view coverage.

7. Keyframe selection strategy.

Selecting keyframes is crucial when the estimation qual-
ity is solely based on multiview images. Having diverse
view coverage of objects usually results in better feature
representation of objects [4, 13, 17]. Unlike the keyframes
selection in ORBSLM [3], which focuses more on the
pose estimation quality than the view coverage, we select
keyframes mainly based on the pose difference and, in ad-
dition, the quality of detected objects. A frame is selected
as a keyframe only 1) it has at least one valid object detected

1



Method Node Type Edge Type Message Passing Type Message Update Method Fusion

IMP Image ROI Image ROI Union Prime-Dual GRU Voting [5]
VGfM Image ROI Image ROI Union Prime-Dual + Geo. description GRU Temporal Gate
3DSSG Points Points Union Triplet concatenation N/A
SGFN Points geometric description FAN concatenation running mean
Ours MV Image ROIs geometric description FAN + Gated Points GRU running mean

Table 6. A summary of the modules used for different methods. The text colored in cyan involves our modification to make all methods
comparable.

and 2) its pose is dissimilar to other existing keyframes.
We measure the validity of bounding boxes by checking if
their minimum width and height are larger than 200 pixels,
and the pose difference threshold is set to 5 degrees in rota-
tion and 0.3 meters in translation. This keyframe selection
method is used for all input, i.e. GT, Dense, and Sparse,
cases in our experiments.

8. Data Distribution

We provide the class distribution on objects and predi-
cates in Fig. 5. It can be seen that the setup in [12] has
severe long-tail data distribution. After mapping to 20
NYUv2 labels [8], the distribution is relatively well dis-
tributed but still unbalanced. The unbalanced distribution
indicates that the mRecall metric reflects better the model
performance.

9. Multi-view Feature Encoding

As mentioned in Sec. 3.2.1, the multi-view feature of
a node is computed by aggregating image features of the
node from multiple images. This is essentially the task of
3D shape recognition with arbitrary views. We compare the
use of simple mean aggregation, as in MVCNN [9], with the
state-of-the-art method, CVR [13] on ScanNet [1] dataset.
Since the main comparison is on the multi-view feature ag-
gregation, we use the same backbone, ResNet18 [3], for
both methods. All networks are trained from scratch us-
ing the splits from ScanNet, following the same training ap-
proach described in the respective papers. We report the
mean intersection-over-union (mIoU), precision (mPrec),
and recall (mRecall).

The result is shown on Tbl. 7. It can be seen that the
use of simple mean operation outperforms canonical trans-
formation in CVR [13]. Although the number reported in
CVR [13], it outperforms MVCNN in ModelNet40 [15],
ScanObjectNN [10] and RGBD [6]. We investigated the
difference between the three datasets mentioned above and
ScanNet and found that the images from ScanNet [1] con-
tain more background objects while the others have non-
cluttered backgrounds. We demonstrate some example im-
ages in Fig. 6. The performance inconsistency may indicate

mIoU(%) mPrec(%) mRecall(%)

CVR [13] 32.3 45.2 54.4
MVCNN [9] 39.2 50.5 61.4

Table 7. Object classification result on ScanNet dataset. A simple
averaging of overall image features (MVCNN) outperforms the
sophisticated multi-view image encoding method (CVR).

that using the mean operator makes the model less sensitive
to background things.

10. Comparing confidence and IoU-based
methods

We provide an example of the difference between using
the maximum IoU and our maximum mean confidence to
find the most probable correspondence with a sparse point
map. In figure 7, given three consecutive frames at t = n,
t = n+1 and t = n+2 for the label association and fusion,
their entity maps and the association result are shown on the
second and third columns (separated by white space). The
second column is the label fusion result with IoU [7], and
the third column is ours. When using IoU (second column),
the table label at t = n is assigned to the floor at t = n+ 2.
This is due to the map points created at t = n + 1 on the
floor (carpet) having larger IoU than the table. With our
approach (third column), the table label at t = n remains at
the table at t = n+2. This shows that our method provides
more consistent label association. Note that the label colors
are different between IoU and ours since the segment color
are randomly in each run.

11. Ablation Study

We provide two additional ablation studies: (1) the use
of edge descriptor (Tab. 8) and (2) the effect of the sig-
moid gate on the geometric feature (Tab. 9). In Tab. 8,
it can be seen that the use of our relative pose descriptor
Ri→j leads to better overall performance in GT and Sparse
settings while having slightly worse performance in Dense
setting. In Tab. 9, using the gated geometric feature consis-
tently achieves better performance in all three setups.



https://docs.google.com/spreadshe
ets/d/1qOwLqGquqUXBzuVkZmOU
zxohAtyiyz8Oz09x_HHVO48/edit#g
id=0
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Figure 5. We provide the class distribution for two scene graph experiments in Tbl. 1 and Tbl. 2. The row (a) is the distribution for the
experiment setup in [14] and in Tbl. 1. (b) is the distribution for the experiment setup in [12] and in Tbl. 2.

Figure 6. We provide examples of multi-view images of the same
object in the ScanNet dataset. For display purposes, we only select
four views of the same object. It can be seen that the multi-view
observation of an object in a standard indoor dataset includes some
non-target objects in the field of view. Those objects are consid-
ered noise which affects the multi-view image encoding.

Recall(%) mRecall
Edge Type Rel. Obj. Pred. Obj. Pred.

GT
Points 62.0 77.9 95.9 68.4 69.0
Ri→j 66.1 81.2 95.6 77.4 71.5

Dense
Points 35.1 57.5 89.6 47.9 33.2
Ri→j 34.1 58.1 89.9 43.0 33.3

Sparse
Points 10.0 28.7 90.6 21.1 16.3
Ri→j 9.9 29.5 90.4 23.5 16.5

Table 8. Ablation study on the use of input type for computing
edge feature. The experiment setup is the same as in Tbl. 1. Here
Points means taking the point cloud union as in [12], and Ri→j is
the relative pose descriptor described in Sec. 3.2.2.

11.1. Comparison in edge descriptor

compare non-learned and learned descriptors.

Recall(%) mRecall
Gate Rel. Obj. Pred. Obj. Pred.

GT
61.5 77.1 95.3 77.1 70.9

✓ 66.1 81.2 95.6 77.4 71.5

Dense
32.9 55.5 89.1 41.0 31.4

✓ 34.1 58.1 89.9 43.0 33.3

Sparse
8.6 26.9 90.5 24.4 15.6

✓ 9.9 29.5 90.4 23.5 16.5

Table 9. Ablation study on the proposed gated geometric feature.
We ablate the use of a sigmoid function of a gate for the input
geometric feature using the same experimental setup as in Tbl. 1.

11.2. Gate on the geometric feature

whether to use the gate in the geometric feature or to
use different ways of selecting keyframes. We provide an
additional ablation study on the effect of using a sigmoid
gate when including the geometric feature in our message
passing payer.

12. Additional Results

12.1. Per-class prediction result

In Tbl. 10, We provide the per entity class recall for the
experiment reported in Tbl. 1. Our method has dominant
performance on most of the classes regardless of the input
segmentation types.

12.2. Without consider None estimation

Our evaluations follow the line of work [12, 14] which
consider None relationship is crucial, unlike other work [2,
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Figure 7. An example of comparing the use of IoU and our label association approach with the sparse input points. Our method handles
non-uniformly distributed data better than the IoU-based method.
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G
T

IMP 0.000 0.667 0.143 0.562 0.688 0.677 0.712 0.292 0.541 0.957 0.262 0.727 0.000 0.143 0.617 0.579 0.731 0.889 0.856 0.560 0.530
VGfM 0.750 0.833 0.286 0.423 0.854 0.677 0.712 0.042 0.658 0.969 0.319 0.693 0.000 0.286 0.633 0.592 0.641 0.852 0.847 0.429 0.575
3DSSG 0.500 0.333 0.000 0.477 0.838 0.516 0.432 0.417 0.622 0.957 0.288 0.205 0.000 0.143 0.717 0.605 0.563 0.630 0.609 0.357 0.460
SGFN 1.000 0.833 0.143 0.385 0.696 0.839 0.577 0.417 0.631 0.963 0.372 0.830 0.111 0.143 0.783 0.434 0.647 0.593 0.718 0.429 0.577
Ours 1.000 1.000 0.000 0.619 0.927 0.645 0.847 0.583 0.838 0.969 0.539 0.943 0.667 1.000 0.900 0.671 0.808 1.000 0.877 0.655 0.774

D
en

se

IMP 0.000 0.667 0.000 0.381 0.453 0.000 0.477 0.000 0.081 0.951 0.199 0.023 0.000 0.000 0.200 0.474 0.485 0.667 0.770 0.179 0.300
VGfM 0.000 0.667 0.000 0.346 0.494 0.000 0.486 0.042 0.198 0.957 0.141 0.011 0.000 0.000 0.233 0.579 0.569 0.630 0.780 0.179 0.316
3DSSG 0.250 0.667 0.000 0.200 0.510 0.258 0.505 0.000 0.477 0.914 0.147 0.034 0.222 0.143 0.250 0.474 0.425 0.259 0.519 0.131 0.319
SGFN 0.750 0.333 0.000 0.508 0.636 0.194 0.405 0.083 0.387 0.969 0.230 0.114 0.111 0.000 0.383 0.553 0.623 0.519 0.730 0.131 0.383
Ours 0.750 1.000 0.000 0.504 0.656 0.194 0.459 0.125 0.342 0.969 0.251 0.057 0.000 0.143 0.383 0.579 0.599 0.667 0.761 0.155 0.430

Sp
ar

se

IMP 0.000 0.333 0.000 0.235 0.146 0.129 0.252 0.167 0.099 0.798 0.068 0.023 0.000 0.286 0.183 0.329 0.281 0.259 0.324 0.214 0.206
VGfM 0.000 0.333 0.000 0.273 0.150 0.097 0.243 0.042 0.081 0.810 0.047 0.011 0.000 0.000 0.150 0.276 0.263 0.222 0.325 0.202 0.176
3DSSG 0.000 0.000 0.000 0.085 0.045 0.000 0.108 0.000 0.063 0.558 0.005 0.011 0.000 0.000 0.017 0.000 0.186 0.000 0.048 0.060 0.059
SGFN 0.000 0.000 0.000 0.058 0.081 0.032 0.072 0.042 0.063 0.712 0.010 0.034 0.000 0.000 0.083 0.092 0.174 0.000 0.097 0.107 0.083
Ours 0.500 0.333 0.286 0.273 0.227 0.129 0.270 0.042 0.135 0.810 0.110 0.068 0.000 0.000 0.217 0.211 0.263 0.296 0.342 0.179 0.235

Table 10. The per-class Recall of all methods in 3RScan dataset [11] with 20 node classes.

16] which only consider edges with annotated non-None re-
lationships. Both approaches have their advantages. Con-
sidering None estimation prevents excessive relationship es-
timation while also preventing potential relationship discov-
ery, e.g. should exist but was not annotated. For further
comparison and the interest of potential readers, we provide
the evaluation result without considering the None relation-
ship in Tab. 11 and Tab. 12, with the experiment setup as
reported in Tbl. 1 and Tbl. 2.
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