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1. Overview

In this document, we describe the architecture and train-
ing details of the proposed SKF in Sec. 2. We present addi-
tional visual comparisons with existing SOTA methods on
real-world datasets, including LOL, LOL-v2, MEF, LIME,
NPE and DICM, in Sec. 3. We provide additional ablation
study in Sec. 4. Finally, we present limitations and future
works in Sec. 6.

2. Additional Implementation Details

2.1. Pre-Trained Semantic Segmentation Network

The proposed SKF uses a pre-trained semantic seg-
mentation network as the SKB to obtain semantic pri-
ors. We selected HRNetV2-W48 [6] due to the porta-
bility of encoder-decoder architecture and superior perfor-
mance. The HRNetV2-W48 used as SKB is pre-trained
on PASCAL-Context dataset [5] with the input size of
480 × 480. The PASCAL-Context dataset includes 4,998
scene images for training and 5,105 images for testing with
59 semantic labels and 1 background label. Furthermore,
the weights of the HRNetV2-W48 are fixed during training
stage to exploit the generative semantic priors.

Additionally, we find that the HRNetV2-W48 could pro-
duce under-optimized segmentation labels if the inputs are
low-light images, which compromises the reliability of the
prior and finally causes unexpected outputs. Hence, for
each baseline method, we adopt specific data preprocessing
to make the segmentation result more accurate, which is de-
scribed in Sec. 2.2. The main body of HRNetV2-W48 con-
tains four stages with four parallel convolution streams. The
resolutions of the streams are 1/4, 1/8, 1/16, and 1/32, which
generate four features with corresponding resolutions(F0 ∈
RH

4 ×W
4 ×C , F1 ∈ RH

8 ×W
8 ×2C , F2 ∈ RH

16×
W
16×4C and

F3 ∈ RH
32×

W
32×8C , where C = 48) respectively. The repre-
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sentation head of HRNetV2 mixes the four features by up-
sampling and 1×1 convolutions and produce the prediction
of size S ∈ RH×W×59. Finally, we take four multi-scale
features and the prediction as semantic priors to guide the
enhancement process, the former are utilized to optimize
the image feature by SE modules while the latter provides
crucial guidance to SCH loss and SA loss.

2.2. Details of Applying SKF to Baseline Methods

In this section, we provide more details of the imple-
mentation of each method with SKF, including the specific
design of adding SE modules into baseline methods and
the detailed experimental settings. The baseline methods
are RetinexNet [8], KinD [13], DRBN [10], KinD++ [12],
HWMNet [1], SNR-LLIE-Net [9] and LLFlow [7]. All the
original hyperparameters and experimental settings are con-
sistent with baseline methods. For RetinexNet-SKF, KinD-
SKF and KinD++-SKF, we directly utilize the output of
Decomposition Net as the refined image, like ISSR. The
Decomposition Net outputs two components, which are re-
flectance map and illumination map. Based on Retinex the-
ory, the former is close to the normal-light image, which can
be utilized as a better input comparing to low-light image.
Furthermore, we also process the input image by Decompo-
sition Net in training stage of HWMNet-SKF, SNR-LLIE-
Net-SKF and LLFlow-SKF to guarantee the accuracy of se-
mantic map. For DRBN-SKF, we select output of the third
recurrence as the refined image. We ensure the reliability
of the semantic priors by providing refined image to SKB
and enable the semantic-guided Enhancement Net to learn
a proper map between low-light and normal-light image.

RetinexNet-SKF, KinD-SKF and KinD++-SKF. First,
we group the RetinexNet, KinD and KinD++ together since
they are Retinex-based methods with similar architectures,
which have multiple subnets and adopt multi-stage training
strategy. The subnets of these methods have to be trained
in order, while only the last subnet use normal-light im-
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age to supervise the parameter update. Thus we only ap-
ply SKF to the methods to train the last subnet, while the
other are trained by the original settings. Additionally, they
are Tensorflow-based methods and we reproduce them by
PyTorch, which may cause the different results.

Considering the memory cost and feature compatibility,
we reasonably design the RetinexNet-SKF, KinD-SKF and
KinD++-SKF. For RetinexNet, we locate two SE modules
before the second last and the last decoder layers and utilize
F0 and S respectively. For KinD, we locate three SE mod-
ules before the last three decoder layers and utilize F0, F1

and F2 respectively. For KinD++, we locate only one SE
module before the last decoder layer and utilize S.

We apply SC loss and SA loss to the stage of training the
last subnet as well. Then we experimentally set the λsc = 1
and λsa = 1 as the standard setting of RetinexNet-SKF,
KinD-SKF and KinD++-SKF.

DRBN-SKF. The DRBN is a deep recursive band net-
work, which is trained via two stages. The results on LOL-
v2 dataset is achieved by the first stage called recursive
band learning. In this stage, the input image is enhanced
by four cascade recursive subnets called recurrence. Each
recurrence is encoder-decoder architecture with three vari-
ous scales, which is suitable for locating SE modules. Then
we apply our SKF to the last recurrence. The input of seg-
mentation net is the output of the third recurrence. We lo-
cate three SE modules before every three decoder layers and
utilize S′ (prediction before Softmax), F0 and F1 respec-
tively. As for training settings, we set λsc = 1 and λsa = 1.

SNR-LLIE-Net. SNR-LLIE-Net can be divided into
three parts: encoder, SNR-guided hidden layers, decoder.
To maintain the original contribution of the method, we lo-
cate SE modules in the decoder to optimize the multi-scale
features. Specifically, we locate three SE modules before
the last three decoder layers and utilize F0, F1 and F2 as se-
mantic priors respectively. As for training settings, we first
manipulate the SC loss and SA loss to the similar scale of
the original loss and set λsc = 0.1 and λsa = 0.1.

HWMNet-SKF. The HWMNet is designed based on M-
Net [4], which is a UNet-like network architecture. The
encoder and decoder of HWMNet both have four various
scales. Then we locate three SE modules before the last
three decoder layers and utilize F0, F1 and F2 respectively.
As for training settings, we set λsc = 0.1 and λsa = 0.1.

LLFlow-S-SKF and LLFlow-L-SKF. LLFlow consists
of a conditional encoder to extract the illumination invariant
color map and an invertible network that learns a distribu-
tion of normally exposed images conditioned on a low-light
one. The conditional encoder has three output features with
different scales, which are inputs of the invertible network.
We locate the SE modules between the conditional encoder
and the invertible network. The SE modules utilize F0, F1

and F2 to enhance the three features output by conditional

network. The LLFlow is trained as a normal flow, which
outputs a invariant color map instead of a normal-light im-
age. Hence we do not apply SA loss to LLFlow, while the
SC loss is still available. The SC loss is reasonably applied
to the color map, which also includes color information. We
set λsc = 1.

More details are shown in the code.

2.3. Additional Details of the Results

In Table. 1 in main paper, we train the methods on LOL
and LOL-v2 datasets to obtain the results on each dataset
respectively. Note that we obtain these numbers of base-
line methods and other SOTA methods either from the re-
spective papers or by running the respective public code.
The results on MEF, NPE, LIME and DICM in Table. 2 in
main paper are also obtained by methods all trained on LOL
dataset in order to fair comparison. Finally, we conduct all
the ablation studies in Table. 3 to 5 in main paper on LOL
dataset as well.

3. More Visual Comparisons
As shown in Figs. 1 to 4 in this supplementary materials,

we give more visual results of methods with our SKF and
baseline methods on LOL/LOL-v2, MEF, NPE, LIME and
DICM datasets as the supplement of the visualization in the
main paper. We can see that methods with our SKF con-
sistently produce more natural results and achieve superior
performance over the baseline methods in various scenes.

4. More Ablation Analysis
As illustrates in Sec. 2.1, the HRNetV2-W48 has four

output features available to be semantic priors. For the ex-
periments on benchmark datasets, as shown in main paper,
each baseline method utilizes specific number of SE mod-
ules to deal with the same number of semantic features.
Hence, we conduct experiments to investigate the varying
number of SE modules. We choose HWMNet because it has
a comprehensive UNet-like architecture with four different
scales in decoder and the end-to-end training strategy. As
shown in Table. 1, we select number of modules from 1 to
4. SE-1 denotes that only one module is located before the
last layer and SE-4 denotes four modules are located before
all the four layers respectively. The results illustrate that
stacking more SE modules can achieve better performance
but consume more memory. Thus, we utilize three SE mod-
ules in HWMNet-SKF and design other methods with SKF
in a similar way.

In Fig. 6 and Table. 3 in main paper, we report quan-
titative results and qualitative results respectively to inves-
tigating the contribution of every three key components of
our SKF, i.e., SC loss, SA loss and SE module. More quali-
tative results are shown in Fig. 5 to further complement the



Table 1. Ablation study of HWMNet-SKF for investigating the
number and different inputs of SE modules. I+S denotes the
semantic-aware manner in this paper, I+I denotes two inputs of
SE module are both image features.

Arch PSNR ↑ SSIM ↑ LPIPS ↓ Param ↓
SE-0 24.240 0.852 0.114 66.56
SE-1 24.792 0.854 0.111 67.11
SE-2 24.891 0.857 0.109 67.82
SE-3 25.123 0.860 0.108 68.77
SE-4 25.155 0.860 0.105 70.35

ablation study of our SKF.

5. More Computational Efficiency Analysis
In this section, we provide more computational effi-

ciency analysis for evaluating practicality. The computa-
tional cost of each model is show in Table. 2. We evaluate
the cost using one image with a size 400× 600.

Table 2. Computational Efficiency Analysis.

Method RetinexNet +SKF KinD +SKF

GFlops(G) 129.33 157.44 356.72 360.41
Param(M) 0.62 0.71 8.03 8.50

Method DRBN +SKF KinD++ +SKF

GFlops(G) 38.79 41.37 335.98 344.27
Param(M) 2.21 2.37 9.63 10.21

Method HWMNet +SKF SNR-Net +SKF

GFlops(G) 929.93 1074.89 87.26 115.97
Param(M) 66.56 68.77 39.13 39.44

Method LLFlow-S +SKF LLFlow-L +SKF

GFlops(G) 128.20 136.14 1048.60 1107.79
Param(M) 4.97 5.26 37.68 38.21

6. Limitations and Future Works
In this section, we discuss the limitations of our work and

suggest the potential future research directions of semantic-
aware low-light enhancement.

Limitations. First, while our SKF improves the en-
hancement capability of baseline methods significantly, the
entire framework is heavily reliant on the quality of seman-
tic priors provided by SKB. We use the reflectance map
as the segmentation net’s input, which may result in mis-
classification due to the divergence between the reflectance
map and the normal-light image. Furthermore, we chose
HRNet pre-trained on the PASCAL-Context dataset as our
SKB because the PASCAL-Context dataset primarily con-
tains indoor scenes, which are also common in LOL/LOL-
v2 datasets. However, there is still a gap between PASCAL-
Context and LOL/LOL-v2 datasets. Hence, our SKF can

generalize across various methods, but the generalizability
across various datasets may be limited by the SKB, to be
specific, by the scale of semantic segmentation dataset and
the performance of semantic segmentation network.

Second, the proposed components of our SKF (i.e., SE
module, SCH loss and SA loss) are preliminary techniques
for introducing semantic priors, which may limit the po-
tential of our SKF. We design the semantic-aware embed-
ding (SE) module inspired by some well-designed attention
blocks [2, 3, 11] instead of specifically designing delicate
module for cross-modal interaction between semantic pri-
ors and images. The simple interaction manner of our SE
module may undermine the fusion process and thus lead to
unsatisfactory features. Furthermore, the SCH loss and SA
loss simply utilize the semantic maps to obtain regional in-
formation and still have potential to be optimized.

Third, we only apply the idea of semantic guidance to
LLIE task due to the motivation of optimize the color and
details of enhanced image. Actually, similar tasks in the
area of low-level vision are suitable to introducing semantic
priors as well.

Future works. According to the limitations of the SKF,
our future works can be organized as follows. We will ex-
plore the improvement of SKB in restoring more semantic
priors and providing correct priors when meeting unknown
instance. Furthermore, we will investigate whether the SKB
could learn from low-light datasets during training stage to
avoid the distribution gap. Then, we plan to design cross-
modal interaction modules specifically for embedding se-
mantic features and semantic-guided losses to utilize priors
in a more reasonable manner. Finally, another valuable di-
rection is to explore the potential of establishing semantic-
guided framework, e.g., our SKF, in other low-level vision
tasks.
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PSNR/SSIM

(b) GT (c) RetinexNet (d) RetinexNet-SKF (e) KinD (f) KinD-SKF (g) DRBN (h) DRBN-SKF (i) KinD++

(j) KinD++-SKF (k) HWMNet (l) HWMNet-SKF (m) SNR-LLIE-Net (n) SNR-LLIE-Net-SKF (o) LLFlow-S (p) LLFlow-S-SKF

(a) Input

(o) LLFlow-L (p) LLFlow-L-SKF

PSNR/SSIM 20.899/0.707 21.820/0.812 19.919/0.824 25.599/0.908 19.186/0.879 25.268/0.897 19.134/0.836

21.139/0.855 20.601/0.874 21.458/0.880 20.783/0.852 21.402/0.854 24.361/0.907 26.571/0.915 25.385/0.912 25.949/0.920

PSNR/SSIM

(b) GT (c) RetinexNet (d) RetinexNet-SKF (e) KinD (f) KinD-SKF (g) DRBN (h) DRBN-SKF (i) KinD++

(j) KinD++-SKF (k) HWMNet (l) HWMNet-SKF (m) SNR-LLIE-Net (n) SNR-LLIE-Net-SKF (o) LLFlow-S (p) LLFlow-S-SKF

(a) Input

(o) LLFlow-L (p) LLFlow-L-SKF

PSNR/SSIM 16.330/0.485 14.118/0.631 16.963/0.798 21.774/0.876 20.044/0.877 20.684/0.883 17.494/0.849

18.840/0.846 22.650/0.895 20.519/0.877 18.550/0.866 18.720/0.865 23.685/0.889 25.726/0.904 24.212/0.905 26.589/0.917

PSNR/SSIM

(b) GT (c) RetinexNet (d) RetinexNet-SKF (e) KinD (f) KinD-SKF (g) DRBN (h) DRBN-SKF (i) KinD++

(j) KinD++-SKF (k) HWMNet (l) HWMNet-SKF (m) SNR-LLIE-Net (n) SNR-LLIE-Net-SKF (o) LLFlow-S (p) LLFlow-S-SKF

(a) Input

(o) LLFlow-L (p) LLFlow-L-SKF

PSNR/SSIM 20.851/0.661 22.883/0.791 24.543/0.897 30.882/0.923 20.840/0.912 28.365/0.925 20.485/0.886

24.575/0.906 28.400/0.928 28.457/0.920 26.677/0.906 27.826/0.914 26.279/0.924 31.792/0.930 28.865/0.936 32.321/0.939

PSNR/SSIM

(b) GT (c) RetinexNet (d) RetinexNet-SKF (e) KinD (f) KinD-SKF (g) DRBN (h) DRBN-SKF (i) KinD++

(j) KinD++-SKF (k) HWMNet (l) HWMNet-SKF (m) SNR-LLIE-Net (n) SNR-LLIE-Net-SKF (o) LLFlow-S (p) LLFlow-S-SKF

(a) Input

(o) LLFlow-L (p) LLFlow-L-SKF

PSNR/SSIM 13.254/0.648 22.200/0.789 18.439/0.877 25.890/0.925 18.698/0.897 19.739/0.908 22.247/0.906

23.275/0.913 24.650/0.923 28.375/0.932 29.200/0.916 30.164/0.926 23.837/0.920 28.742/0.933 23.115/0.924 30.320/0.940

Figure 1. Visual comparison of baseline methods with and without SKF on LOL/LOL-v2 dataset.



PSNR/SSIM

(b) GT (c) RetinexNet (d) RetinexNet-SKF (e) KinD (f) KinD-SKF (g) DRBN (h) DRBN-SKF (i) KinD++

(j) KinD++-SKF (k) HWMNet (l) HWMNet-SKF (m) SNR-LLIE-Net (n) SNR-LLIE-Net-SKF (o) LLFlow-S (p) LLFlow-S-SKF

(a) Input

(o) LLFlow-L (p) LLFlow-L-SKF

PSNR/SSIM 23.966/0.722 24.660/0.821 17.650/0.826 25.900/0.901 21.302/0.888 26.098/0.899 23.618/0.882

24.249/0.880 26.977/0.900 27.278/0.906 27.205/0.892 26.904/0.890 24.592/0.901 27.218/0.921 26.407/0.914 27.088/0.909

PSNR/SSIM

(b) GT (c) RetinexNet (d) RetinexNet-SKF (e) KinD (f) KinD-SKF (g) DRBN (h) DRBN-SKF (i) KinD++

(j) KinD++-SKF (k) HWMNet (l) HWMNet-SKF (m) SNR-LLIE-Net (n) SNR-LLIE-Net-SKF (o) LLFlow-S (p) LLFlow-S-SKF

(a) Input

(o) LLFlow-L (p) LLFlow-L-SKF

PSNR/SSIM 15.880/0.466 19.759/0.596 14.660/0.536 16.130/0.653 17.370/0.646 16.002/0.609 16.887/0.613

14.781/0.543 13.576/0.600 21.567/0.724 21.728/0.682 21.986/0.707 21.872/0.711 21.316/0.678 21.692/0.709 21.453/0.697

PSNR/SSIM

(b) GT (c) RetinexNet (d) RetinexNet-SKF (e) KinD (f) KinD-SKF (g) DRBN (h) DRBN-SKF (i) KinD++

(j) KinD++-SKF (k) HWMNet (l) HWMNet-SKF (m) SNR-LLIE-Net (n) SNR-LLIE-Net-SKF (o) LLFlow-S (p) LLFlow-S-SKF

(a) Input

(o) LLFlow-L (p) LLFlow-L-SKF

PSNR/SSIM 15.692/0.468 18.223/0.689 15.550/0.809 17.000/0.829 17.153/0.838 15.628/0.817 14.955/0.794

16.686/0.816 15.295/0.820 25.733/0.824 19.616/0.854 18.104/0.845 26.913/0.890 26.665/0.893 27.629/0.913 29.309/0.930

PSNR/SSIM

(b) GT (c) RetinexNet (d) RetinexNet-SKF (e) KinD (f) KinD-SKF (g) DRBN (h) DRBN-SKF (i) KinD++

(j) KinD++-SKF (k) HWMNet (l) HWMNet-SKF (m) SNR-LLIE-Net (n) SNR-LLIE-Net-SKF (o) LLFlow-S (p) LLFlow-S-SKF

(a) Input

(o) LLFlow-L (p) LLFlow-L-SKF

PSNR/SSIM 18.293/0.420 17.669/0.595 23.614/0.791 28.000/0.823 23.605/0.814 25.951/0.819 21.407/0.773

23.181/0.789 27.670/0.828 27.922/0.821 27.531/0.795 28.100/0.795 25.353/0.830 27.108/0.836 26.077/0.836 27.827/0.844

Figure 2. Visual comparison of baseline methods with and without SKF on LOL/LOL-v2 dataset.



(b) Input

(c) RetinexNet

(d) RetinexNet-SKF

(e) KinD

(f) KinD-SKF

(g) DRBN

(h) DRBN-SKF

(i) KinD++

(j) KinD++-SKF

(k) HWMNet

(l) HWMNet-SKF

(a) Input

(b) Input

(c) RetinexNet

(d) RetinexNet-SKF

(e) KinD

(f) KinD-SKF

(g) DRBN

(h) DRBN-SKF

(i) KinD++

(j) KinD++-SKF

(k) HWMNet

(l) HWMNet-SKF

(a) Input

(b) Input

(c) RetinexNet

(d) RetinexNet-SKF

(e) KinD

(f) KinD-SKF

(g) DRBN

(h) DRBN-SKF

(i) KinD++

(j) KinD++-SKF

(k) HWMNet

(l) HWMNet-SKF

(a) Input

(b) Input

(c) RetinexNet

(d) RetinexNet-SKF

(e) KinD

(f) KinD-SKF

(g) DRBN

(h) DRBN-SKF

(i) KinD++

(j) KinD++-SKF

(k) HWMNet

(l) HWMNet-SKF

(a) Input

Figure 3. Visual comparison of baseline methods with and without SKF on LIME/MEF dataset.



(b) Input

(c) RetinexNet

(d) RetinexNet-SKF

(e) KinD

(f) KinD-SKF

(g) DRBN

(h) DRBN-SKF

(i) KinD++

(j) KinD++-SKF

(k) HWMNet

(l) HWMNet-SKF

(a) Input

(b) Input

(c) RetinexNet

(d) RetinexNet-SKF

(e) KinD

(f) KinD-SKF

(g) DRBN

(h) DRBN-SKF

(i) KinD++

(j) KinD++-SKF

(k) HWMNet

(l) HWMNet-SKF

(a) Input

(b) Input

(c) RetinexNet

(d) RetinexNet-SKF

(e) KinD

(f) KinD-SKF

(g) DRBN

(h) DRBN-SKF

(i) KinD++

(j) KinD++-SKF

(k) HWMNet

(l) HWMNet-SKF

(a) Input

(b) Input

(c) RetinexNet

(d) RetinexNet-SKF

(e) KinD

(f) KinD-SKF

(g) DRBN

(h) DRBN-SKF

(i) KinD++

(j) KinD++-SKF

(k) HWMNet

(l) HWMNet-SKF

(a) Input

Figure 4. Visual comparison of baseline methods with and without SKF on NPE/DICM dataset.



(a) Baseline (b) W/ SCH loss (c) W/ SE (d) W/SCH loss & SE (e) W/SCH loss & SA loss & SE (f) GT

27.727/0.904/0.105/4.700

(a) Baseline (b) W/ SCH loss (c) W/ SE (d) W/SCH loss & SE (e) W/SCH loss & SA loss & SE (f) GT

(a) Baseline (b) W/ SCH loss (c) W/ SE (d) W/SCH loss & SE (e) W/SCH loss & SA loss & SE (f) GT

(a) Baseline (b) W/ SCH loss (c) W/ SE (d) W/SCH loss & SE (e) W/SCH loss & SA loss & SE (f) GT

(a) Baseline (b) W/ SCH loss (c) W/ SE (d) W/SCH loss & SE (e) W/SCH loss & SA loss & SE (f) GT

(a) Baseline (b) W/ SCH loss (c) W/ SE (d) W/SCH loss & SE (e) W/SCH loss & SA loss & SE (f) GT

28.508/0.900/0.094/3.961 27.224/0.900/0.112/4.291 29.281/0.896/0.086/3.548 29.012/0.899/0.095/3.670 PSNR/SSIM/LPIPS/NIQE

19.181/0.865/0.160/4.768 18.283/0.859/0.172/4.677 26.053/0.895/0.126/4.493 28.014/0.892/0.139/4.426 28.030/0.896/0.117/4.330 PSNR/SSIM/LPIPS/NIQE

28.419/0.903/0.080/4.653 29.236/0.912/0.072/4.629 29.271/0.913/0.078/4.555 29.115/0.905/0.076/4.115 29.471/0.911/0.072/4.052 PSNR/SSIM/LPIPS/NIQE

20.959/0.875/0.122/4.322 22.728/0.887/0.110/4.528 24.530/0.896/0.099/4.001 25.839/0.896/0.109/4.034 22.753/0.890/0.102/3.870 PSNR/SSIM/LPIPS/NIQE

27.928/0.903/0.086/7.542 29.132/0.927/0.065/6.352 28.259/0.925/0.082/6.830 28.208/0.917/0.080/5.567 28.457/0.920/0.082/5.753 PSNR/SSIM/LPIPS/NIQE

20.840/0.912/0.101/6.5405 17.886/0.897/0.112/6.853 22.020/0.918/0.095/6.917 31.041/0.920/0.104/7.112 28.365/0.925/0.083/6.911 PSNR/SSIM/LPIPS/NIQE

Figure 5. Ablation study of DRBN-SKF and HWMNet-SKF. Baseline, baseline with SC loss, baseline with SE module, baseline with SC
loss and SE module, baseline with SC loss, SA loss and SE module, groundtruth are shown from left to right. For each image, top and
bottom rows are results of HWMNet-SKF and DRBN-SKF respectively.
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