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1. Additional Results
1.1. Additional Comparisons with Prior Works

Qualitative Comparisons Fig. 5 and Fig. 6 show qual-
itative comparisons with prior works on both horses and
birds. Our method predicts 3D shapes with finer details and
more accurate poses, compared to prior works. We also plot
the distribution of predicted viewpoints demonstrating that
other methods with a comparable level of supervision col-
lapse to only a limited range of viewpoints, e.g. predicting
only frontal poses.

We also compare against another recent method,
LASSIE [8], which also leverages DINO-ViT [1] image fea-
tures but only optimises over a small set of images (~ 30).
As illustrated in Fig. 1, LASSIE [8] starts from a heavily
hand-crafted part-based initial shape, whereas our method
starts with a generic ellipsoid with only a simple descrip-
tion of the bone topology. Yet after training, our model pro-
duces more detailed 3D shapes from a new test image un-
seen at training, compared to the reconstructions obtained
by LASSIE which are directly optimised on these images.

Visualisations of Toy Bird Reconstructions. Supple-
mentary to Tab. 2 in the main paper, we show a qualitative
comparison of the predicted shapes and the scanned ground-
truth shapes on the Toy Bird Scan dataset in Fig. 4.

1.2. Ablation Studies

We further provide quantitative ablation studies on the
Toy Bird Scans benchmark in Tab. 1, validating the effec-
tiveness of individual components of the model. In addi-
tion to Fig. 5 in the main paper, we also examine the ef-
fects of both the feature rendering loss L, and the multi-
hypothesis viewpoint prediction in Fig. 3, demonstrating
that both of the components are essential to prevent the col-
lapse of viewpoint prediction.
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Figure 1. Comparison with LASSIE [8] on Horses. LASSIE
starts from a heavily hand-crafted part-based initial shape, whereas
our method simply starts with a generic ellipsoid with a simple
heuristic description of the bone topology. After training, our
method produces more plausible 3D shapes from an unseen test
image, compared to the reconstructions obtained from LASSIE
which are directly optimised on these images. Note that LASSIE
represents the 3D shape with a set of disjoint primitive parts, re-
sulting in unnatural junctions.

1.3. Texture Finetuning

Fig. 7 shows how a quick test-time finetuning (100 itera-
tions) of the predicted texture improves their quality. This is
especially effective for images that are far from the training
set distribution. Note that the textures of the real horses in
the main paper are predictions from a single forward pass.

1.4. Additional Qualitative Results

Additional results of single image reconstruction, ani-
mation and relighting can be found in Fig. 8 and the sup-
plementary video. More generalisation results on abstract
horse drawings, sculptures and toys are presented in Fig. 9,
showing that the model has learned to estimate shape, pose
and articulation sufficiently robustly to generalise beyond
the training distribution.
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We also show more reconstruction results of giraffes, ze-
bras and cows in Fig. 10. Our method is able to produce
accurate shape reconstructions from a single image across
large variations of animal shapes.

1.5. Failure Cases

Our texture prediction might not generalise well enough
beyond the distribution of textures observed during train-
ing. This is particularly apparent when the trained model is
applied on paintings and abstract drawings of horses, nei-
ther of which are part of the training set. We demonstrate
that a quick finetuning step of the albedo network (100 it-
erations which takes less than 10 seconds) can remedy this
shortcoming. Fig. 7 illustrates the difference between the
single-pass predicted textures and the finetuned version.

The viewpoint prediction can fail in the case of more ex-
treme and ambiguous views as shown Fig. 2. This is often
caused by DINO-VIiT features that are less distinctive for
these particular views.

When the horse is observed from a side-view, the method
might not be able to disambiguate between left and right
legs, for instance, in the second to last row of Fig. 8. Note
that our method uses only object masks and self-supervised
DINO-VIT features, neither of which are sufficient to dis-
ambiguate between different legs of an animal.

2. Additional Technical Details
2.1. Articulation Model Details

Recall that our model estimates a set of bones and articu-
lates the instance mesh using a linear blend skinning model
with predicted bone rotations. In the following, we describe
in detail how the rest-pose bones are estimated and how the
skinning weights are defined.

Bone Topology. Our method only assumes a description
of the topology of the animal’s skeleton, and automatically
estimates a set of bones at rest pose for the articulation
model based on simple heuristics. Specifically, for birds,
we estimate a chain of 8 bones with equal lengths that lie on
two line segments going from the centre (root) of the rest-
pose mesh to the two most extreme vertices along z-axis (4
bones on each side), forming a ‘spine’.

For quadrupedal animals, like horses, we lift the root
joint slightly higher and further add 4 sets of bones for mod-
elling the legs, as illustrated in Fig. 1. We first identify the
foot joints as the lowest points of mesh (in y-axis) in each of
four xz-quadrants. We then draw 4 line segments from the
foot joints to their closest spine joints, and define a chain of
3 bones with equal lengths on each of the segments, repre-
senting each leg.

Skinning Weights. Recall Eq. (2) in the main paper,
where the instance mesh is further posed by a linear blend
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Figure 2. Incorrect Viewpoint Predictions. The viewpoint pre-
diction can be less reliable in the case of more extreme input views.

skinning equation. Each vertex Vi, ; is associated with the
bones by a skinning weight w; ;, defined as:

e*di,b/n
Wip = B “d
Dy € Tk (1)
where d;p = min ||Vige; —7Jp — (1 — r)Jﬂ(b)H%
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is the minimal distance from the vertex Vi, ; to each bone

b, defined by the rest-pose joint locations Jy, J (3 in world
coordinates, and 7y is a temperature parameter set to 0.5.

Constraints on the Bone Rotations. Our model learns
complex articulated 3D poses of animals using reconstruc-
tion losses on single-view images, without any explicit 3D
geometric supervision, which is an extremely ill-posed task.
In order to prevent unnatural poses, we enforce minimal
constraints on the bone rotations: (1) all bone rotations are
limited to (—60°,60°), (2) for quadrupeds, leg rotations
around y- and z-axes (‘twist’ and ‘side-bending’) are fur-
ther limited to (—18°,18°).

2.2. Network Architectures

We implement the feature field ¢, template SDF s and
the light network f; using 5-layer MLPs, and the albedo
field f, and deformation field fay with 8-layer MLPs. The
articulation network consists of 4 transformer blocks. All
coordinate inputs are encoded using sin(-) and cos(-)
with 8 frequencies.

The encoders are simple convolutional networks, de-
scribed in Sec. 2.4. In practice, the viewpoint network fy,
is also (separately) implemented using the same architec-
ture as the encoder. Abbreviations of the components are
defined as follows:

e ConV(Cin, Cout, k, 8, p): 2D convolution with ¢;,, input
channels, c¢,,; output channels, kernel size k, stride s
and padding p

* GN(n): group normalization [7] with n groups



Table 2. Architecture of the patch feature encoders fx, fo.

Encoder Output size

Conv(384, 256, 4,2, 1) + GN(64) + LReLU(0.2) 16 x 16
Conv(256, 256, 4,2, 1) + GN(64) + LReLU(0.2) 8 x 8
Conv(256, 256, 4,2, 1) + GN(64) + LReLU(0.2) 4 x4
Conv(256, 256, 4, 2, 0) — output 1x1

* LReLU(p): leaky ReLU [5] with a slope p

2.3. Hyper-parameters and Training Details

All hyper-parameters are listed in Tab. 3. We enable the
articulation after 10k iterations and the deformation after
40k iterations, to prevent the model from overfitting indi-
vidual images with excessive articulation and deformation.
During the first 5k iterations, we allow the model to ex-
plore all four viewpoint hypotheses by randomly sampling
the four hypotheses uniformly, and gradually decrease the
chance of random sampling to 20% while sampling the best
hypothesis for the rest 80% of the time. The temperature T
is decreased from 1 to 0.01 over the course of 100k itera-
tions. It takes roughly 20 hours to train the full model for
150k iterations on one single NVIDIA A40 GPU.

2.4. Keypoint Transfer Evaluation Details

Due to the lack of 3D ground-truth for in-the-wild ob-
jects, we employ the Keypoint Transfer task and compute
the Percentage of Correct Keypoints (PCK) [2—4] as an in-
direct metric for evaluating the reconstructed 3D shapes, as
described in Sec. 4.4 in the main paper. A transferred key-
point is correct if it is within a distance d of the correspond-
ing ground-truth 2D keypoint in the target image. The value
of d is computed as 0.1 - max(h, w) for PCK@0.1, where h
and w represent the height and width of the ground-truth ob-
ject bounding box. We follow the open-source implementa-
tion! of the metric as described in [3] for the PASCAL VOC
Horse dataset and in [4] for the CUB Bird dataset. It should
be noted that [3] defines their error with respect to a bound-
ing box that is padded by 5% of the original size on each
side. To maintain consistency, we follow the same practice
for the PASCAL VOC Horse dataset.
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Figure 3. Visualisations of the Viewpoint Prediction Distributions of the Ablated Models. We demonstrate that both feature recon-
struction loss Lieo and multi-hypothesis viewpoint prediction are needed to successfully recover a full range of viewpoints. The viewpoint
prediction collapses to a limited range as demonstrated by its azimuth without these two components. Note that for Horses, we only predict
the azimuth of the viewpoint, as most of the horse images were taken with little elevation.
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Figure 4. Visual Comparison on Toy Bird Scans Evaluations. We compare the reconstructed shapes with scanned ground-truth shapes
from Toy Bird Scans dataset. We show the reconstructed mesh from the input view and three additional views. Our model is able to predict
finer shape details including the bird’s legs as opposed to the prior work of DOVE [6].
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Figure 5. Comparison with DOVE [6] on Horses. We visualise the distribution of predicted viewpoints on the test set together with
additional qualitative results. Our method is able to recover the full range viewpoint azimuth, while DOVE covers only a portion of
possible azimuths. This is further illustrated by the qualitative results, where DOVE often fails to predict the correct viewpoint as opposed
to our method. Moreover, our predicted shape is far more detailed. Note that for horses, we only predict azimuth rotations, as most of the
horse images were taken with little elevation.
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Figure 6. Comparison with Previous Methods on Horses. As in Fig. 5 we visualise the distribution of predicted viewpoints on the test
set together with additional qualitative results. The plot of viewpoint prediction distribution on CUB test set shows that our method is able
to recover a wide range of viewpoints while UMR, which uses a similar level of supervision, is able to predict only frontal poses. We
also present additional qualitative results on CUB test set demonstrating that our method recovers shapes with greater details than previous
works while using significantly less supervision.
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Figure 7. Texture Finetuning at Test Time. We show a shape and texture prediction from an input view and one additional view together
with a finetuned version of the texture. We demonstrate that a simple finetuning of the texture on the input image can produce high-quality
textures for images that are too far from the training set distribution.
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Figure 8. Reconstruction of Real Horse Images. We show the predicted mesh from the input view and three additional views. We
also demonstrate that our shape can be animated by articulating the estimated skeleton. Finally, as our method decomposes albedo and
lightning, our predictions can be easily relit.
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Figure 9. Reconstruction of Abstract Horse Drawings and Artefacts. As in Fig. 8, here we show the predicted meshes from the input
view and three additional views together with the animated and relit versions. The results demonstrate excellent generalisation of our
method on images far from the distribution of the training set which consists only of real horse images.



§?§9§§¥§§999

N\ W
N
ﬁ
N A
W
m
~
A
F
AW
» M

Input Image Input View Other Views Animated Relit

Figure 10. Reconstruction of Giraffes, Zebras and Cows. After finetuning on new categories, our method generalises to various animal
classes with highly different underlying shapes. We show the predicted mesh from the input view and three additional views together with
animated versions of the shape obtained by articulating the estimated skeleton. Finally, we show a relit version.
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