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A. Experiment details

A.1. More details about Fourier grid features

In Sec. 3.1 of the main text, the multi-level Fourier grid
features are defined to compute the continuous mapping be-
tween the input coordinate x P Rn and the m dimension
feature space. Following instantNGP, we set the base reso-
lution Nmin and a scaling coefficient cg between adjacent
levels to define the resolution for a certain level l as:

Nl “ Nmin ¨ clg, (11)

where the level index l starts from 0. We adjust the total
number of levels to balance the ability to model fine details
and the complexity of the model itself. To compute the vari-
ance values that we use to initialize the Fourier features, we
apply a similar scaling strategy:

�l “ �min ¨ clf , (12)

where �min and cf represent the base variance value and its
corresponding scaling coefficient. Roughly, we set �min “
2
?
Nmin and cg « cf . However, the optimal choice of these

values is circumstantial and we modify Nmin, cg , �min and
cf for each task.

A.2. 2D image fitting

To roughly match the model capacity used by other
methods, for the ‘Tokyo’ image we use fully-connected
layers with 96 neurons, and for the ‘Einstein’ image 256.
All fully connected layers are using sine activations as pre-
viously described in the main text. Additionally, for the
‘Tokyo’ image we use Nmin “ 64, cg “ 1.5, �min “ 5.0
and cf “ 2.0, and for the ‘Einstein’ image we use Nmin “
64, cg “ 2.0, �min “ 10.0 and cf “ 2.0.

For both images, we train our network with 50,000 itera-
tions to ensure full convergence—our method already con-
verges after 20,000 iterations. To well-reconstruct complex
high-frequency signals, we set ↵i in Eq. (5) to 100.

A.3. 3D SDF regression

For this task, we train our network for 50,000 iterations
on 26 million sampled points with a batch size of 49,152,
to maximize GPU memory utilization. As the SDF has
varying level-of-detail—e.g., smooth regions can be very
smooth, while detailed regions can have high-frequency
detail—we set the number of levels to five for the Fourier
grid feature. For each level, we use fully-connected layers
with 256 neurons. We further set Nmin “ 8, cg “ 1.3,
�min “ 5 and cf “ 1.2. For both shapes in Tab. 2, we

T “ 217 T “ 219 T “ 221

L “ 8 L “ 10 L “ 12 L “ 8 L “ 10 L “ 12 L “ 8 L “ 10 L “ 12

InstantNGP 28.18 30.89 31.93 29.38 33.37 36.41 30.41 36.37 41.28
Ours 30.31 32.86 33.82 31.28 34.53 37.56 31.43 36.86 41.36

Table A. Performance under varying T and L – Our method
shows higher PSNR values for ‘Tokyo’ image with various T and
L settings.

choose ↵i “ 45, which we empirically found to provide the
best balance between high- and low-frequency details for
this task.

A.4. Neural radiance field

For this task, we closely follow the experimental setup
of InstantNGP, including the four levels for the grid. For
our method, we use 128 neurons to match a similar model
capacity as the baseline. We further set ↵i “ 20.0, Nmin “
64, cg “ 2.0, �min “ 8.0, cf “ 1.4 to balance model
complexity and synthesis quality.

A.5. Preparing SDF data for SDF regression

To obtain the ground-truth SDF values, we use pysdf1.
We use the original mesh files and normalize them into
a unit sphere to standardize shapes. When training each
model, for each batch, we sample 49152 points for train-
ing where 20% of the points are sampled uniformly within
the volume, 30% of the points are sampled near the shape
surface, and the rest are sampled directly on the surface.

A.6. Experimental setting for InstantNGP

Generally, our choices are based [37, Sec. 3.]. As shown
in [37, Fig. 5.], F“2 and L“16 are good choices for the
feature dimension F and feature level L. For the hash table
size T , we choose 219 as it is when the performance starts
being throttled as shown in [37, Fig. 4.]. For the ‘Einstein’
image in Tab. 1 of the main text, we reduced the model’s
capacity as the image is simpler.

In addition, we use various settings for T and L for
both InstantNGP and our method and report the results for
‘Tokyo’ image in Tab. A. Regardless of the hyperparameter
settings, our method outperforms InstantNGP consistently.

B. More ablation studies

As discussed in Sec. 3 of the main text, our key idea is
the Fourier grid features, and the wavelet-inspired compo-
sition. Here, we further justify our design choices based on
experiments.

1Github link: https://github.com/sxyu/sdf

https://github.com/sxyu/sdf
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Figure A. Ablation studies for the Fourier feature variance (left)
and the scaling factor ↵ in fully-connected layers (right). Both
parameters highly affect how frequency is dealt with within our
framework, and thus require optimal values to be set. These pa-
rameters are mostly task dependant.

The effect of grid resolutions. In Sec. 1., we discuss how
grid resolution relates to what frequency range a model can
reconstruct. In Fig. B, we illustrate that this is indeed the
case by varying Nmin. Also in Fig. C, we show how the
scaling factor cg affects final results. As expected, whether
fine details are preserved or not depends highly on the two
parameters.

The effect of the Fourier feature variance. In Sec. 3.1,
we discuss how our initialization strategy leads to the nat-
ural biasing of frequency components. Thus, this variance
has a strong impact on the performance of the method—too
high variance would lead to the method focusing only on
high-frequencies, while too low variance would cause the
opposite. Thus, this variance should be selected with care.
In Fig. A, we show how the variance �min affects the fi-
nal reconstruction performance—�min should roughly be
in a proper range, as demonstrated by the �min “ 1 and
�min “ 8 results.

The effect of the scaling factor ↵i. Similarly, ↵i is an-
other parameter that highly impacts how each layer com-
bines grid features and the features from the previous layer.
We set a single global value for all layers for simplicity, and
experiment with multiple values to demonstrate its effect in
Fig. A. As expected, a properly tuned value is necessary for
optimal performance. We found this parameter to be highly
task dependant.

The effect of Fourier encodings We also demonstrate the
influences of applying Fourier encodings to the low dimen-
sional grid features by only preserving the Grid+MLP com-
ponents. We train this ablated model for the ‘Tokyo’ im-
age which gives the PSNR of 30.48, whereas the full model
yields 31.57. To further evaluate the effects of activations
for grid features, we implement by replacing the sine acti-
vation functions with Relu and produce 30.39, highlighting

2D Fitting 3D Fitting

Size (MB)Ó PSNRÒ SSIMÒ LPIPSÓ Size (MB)Ó F-scoreÒ CDÓ
InstantNGP [33] 36.0 37.93 0.9578 0.092 46.5 0.845 0.00295
SIREN [41] 5.2 33.35 0.9227 0.253 2.0 0.806 0.00370
ModSine [30] 3.5 28.63 0.8316 0.409 12.0 0.604 0.00386

Ours˚ 4.1 34.64 0.9326 0.136 - - -
Ours 10.0 38.64 0.9672 0.064 1.4 0.833 0.00297

Table B. More comparisons – With more compact networks, our
method can produce competitive or better results compared to
baselines. Our smaller model (Ours˚) is achieved by using smaller
grid sizes.

the necessity of current design choices.
The effect of fully-connected layer size. The size of the
MLP also plays an important role, as it allows for more
complex composition of signals coming from different fre-
quencies. In Fig. D, we illustrate the importance of the MLP
size— the larger the better, but with an increase in compu-
tation and model complexity.
The effect of the Fourier grid level. Finally, we demon-
strate how the number of Fourier grid levels affects our re-
sults. As expected, we observe in Fig. E that the models
with higher grid levels consistently provide better results.

C. More visualization results

In Fig. G and Fig. H, we provide more detailed look into
the 2D reconstruction results. Both results provide highly
impressive reconstructions, without any discernable differ-
ences to the ground truth.

In Fig. F, we further provide the qualitative results for
regressing the ‘Asian Dragon’ shape SDF. Our method and
InstantNGP both provide results with very fine details, but
ours is more compact.

We provide more qualitative results for novel view syn-
thesis in Fig. I. As shown, our method is able to provide
synthesis results with both low-frequency details as shown
by the ‘Lego’ scene, and high-frequency details as shown
by the ‘Ficus’ scene with thin structures.

D. More comparison results

While hyperparameters differ for each task, we found
them to be generally applicable to other scenes for the same
task. In Tab. B with the hyperparameters used in the main
text, we compare our method on six high-resolution images
with each image having more than 10 million pixels, and
ten 3D scenes with complicated geometric details. It is clear
that the proposed method can consistently achieve better or
comparable results with much smaller model size.

E. Note on comparison with ModSine

We use the local representation with a tile size of 64 for
2D && 3D signal fitting, under the auto-decoding setup.
For ModSine [34], we have taken the network from the of-



ficial implementation2 and included it in our training and
evaluation code, to keep all training aspects identical to
ours. We note, however, that our results might not have op-
timal hyperparameter settings, as some of the experimental
setups (layer number, layer size, batch size, and learning
rate) were chosen by us as they were unavailable in [34].

F. Discussions about runtime

As shown in Tab. 3 of the main text, our current imple-
mentation is not utilizing CUDA libraries (e.g. tiny-cuda-
nn3) in places other than the hash grid, thus slower than In-
stantNGP as of now. Our current implementation requires
around 13 minutes to train a Blender scene for the NeRF
task, whereas InstantNGP takes around 3–4 minutes. How-
ever, we suspect that with a more efficient implementation,
for example with a full CUDA-integrated implementation
such as InstantNGP, would greatly accelerate our method,
as our method only introduces a few small linear layers
and Fourier Feature embedding layers, which should not
increase the computation load significantly. Finally, recall
that as shown in Fig. 1 of the main paper, our method con-
verges faster in terms of number of optimization steps than
other methods, including InstantNGP.

G. Limitations and future work

One limitation of our work is that we assume a station-
ary neural field, which is not conditioned, similar to how
InstantNGP is limited. Thus, a potentially fruitful research
direction would be to incorporate recent conditional neu-
ral field methods into our framework. We also notice that
all grid-based methods do have issues when modeling very
large scenes. This is also another potentially interesting re-
search direction.

H. Broader impact

Our work is of fundamental nature and is not immedi-
ately linked to any particular application. However, our
method would facilitate efficient neural field representa-
tions, which can widen the potential application area of
neural fields. In addition, our method, being more effi-
cient, would reduce the amount of computing and power
consumption required for the application of these methods.

2Code from https://ishit.github.io/modsine/
3Code from: https://github.com/NVlabs/tiny-cuda-nn

https://ishit.github.io/modsine/
https://github.com/NVlabs/tiny-cuda-nn


Figure B. The ablation study for the base resolution Nmin. With larger Nmin, fine details are better preserved.

Figure C. The ablation study for the scaling coefficient cg . With larger cg , reconstruction quality improves, with more fine details being
preserved and with higher spatial resolution.
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Figure D. The ablation study results for the MLP size. As the MLP size increases, the network becomes better at composing signals from
various levels, thus various frequencies, leading to a better final outcome.

Figure E. The ablation study for the number of levels for the Fourier grid feature. More levels lead to a drastic increase in the quality of
fine details.



Figure F. 3D fitting result for the ‘Asian Dragon’. The left sub-image is the ground truth shape while six zoomed insets are shown on the
right for better detail visualizations.
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Figure G. 2D fitting result for ‘Einstein’ image. Our entire reconstructed image is presented on the left while four close-up views are
presented on the right. Note how our reconstructions are near-perfect for both coarse and fine details.



Figure H. 2D fitting result for ‘Tokyo’ image. Our entire reconstructed image is presented on the top while four close-up views are
presented on the bottom. Our method provides near-perfect reconstruction.



Figure I. Qualitative results for novel view synthesis with neural radiance fields. Our method is able to clearly reconstruct the textures (e.g.,
the chair on 2nd row) and the geometric details (e.g. the lego on the last row).
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