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A. Additional Information of OmniObject3D

We first provide a full category list with the number of
objects for each class in Figure S1. Most of the categories
have [10, 40] objects. The dataset includes objects that have
undergone common manipulations, as shown in Figure S3
(b). For each object, the raw data includes a textured 3D
mesh and several surrounding videos. To demonstrate the
completeness and high quality of our scanned objects, we
compare the quality between the COLMAP sparse recon-
struction and the textured mesh from the scanner in Fig-
ure S3 (c). Given a high-fidelity 3D scan, we can render
realistic and high-resolution multi-view images with mod-
ern graphics engines like the Blender [14], where we also
save the corresponding depth and normal maps (Figure S2)
for different research usage. We also provide the users with
posed frames from the real-captured videos following [62].
We leverage the calibration board and COLMAP [65] to re-
cover the poses of selected frames with a real-world scale,
as described in the main text, and then we develop a matting
pipeline based on a two-stage U2-Net [61] model together
with a post-processing FBA [19] model. In detail, we first
utilize the Rembg ! tool on image frames to remove back-
grounds from different categories and choose 3,000 good
results as the pseudo segmentation labels. We then refine
our pipeline by fine-tuning with the pseudo labels to boost
its segmentation ability on objects. We show some exam-
ples and failure cases of our segmentation pipeline in Fig-
ure S3 (a).

B. Related Works

We have briefly discussed the related works for the four
benchmarks in the main text, and we conduct a more com-
prehensive discussion here.

Robust Point Cloud Perception. Robustness to out-of-
distribution (OOD) data has been an important topic in point

Uhttps://github.com/danielgatis/rembg

cloud perception since point clouds are widely employed
in safety-critical applications, e.g., autonomous driving. In
particular, OOD styles (e.g., different styles in CAD models
and real-world objects) and OOD corruptions (e.g., miss-
ing points) are two main challenges to point cloud percep-
tion robustness. A line of work [11, 36, 59, 78] evaluates
the robustness to OOD corruptions by adding corruptions
like random jittering and rotation to clean test sets. Re-
cent work works [63,71] further systematically anatomize
the corruptions and propose a standard corruption test suite.
However, they fail to take account of OOD styles. An-
other line of work [2, 62] evaluates the sim-to-real domain
gap by testing models trained on clean synthetic datasets
(e.g., ModelNet-40 [81]) on noisy real-world test sets (e.g.,
ScanObjectNN [73]). However, the sim-to-real gap couples
OOD styles and OOD corruptions at the same time, which
makes the results hard to analyze. In this work, we use Om-
niObject3D dataset to provide high-quality real-world point
cloud to measure the OOD style robustness, and apply sys-
tematic corruptions on top of it to measure the OOD cor-
ruptions robustness. We hence provide the first point cloud
perception benchmark that allows fine-grained evaluation of
the robustness on both OOD styles and corruptions.

Neural Radiance Field. Neural radiance field (NeRF) [48]
represents a scene with a fully-connected deep network
(MLPs), which takes in hundreds of sampled points along
each camera ray and outputs the predicted color and den-
sity. Novel views of the scene are synthesized by projecting
the colors and densities into an image via volume rendering.
Inspired by the success of NeRF, a massive follow-up effort
has been made to improve its quality [4,5,47,75], and effi-
ciency [8,20,50,70]. A branch of works [9,40,62,77,89]
has also explored the generalization ability of NeRF-based
frameworks. PixelNeRF [89], MVSNeRF [9], IBRNet [77],
and NeuRay [40] reconstruct the radiance field with a mere
forward pass during inference via training on cross-scenes.
NeRFormer [62], IBRNet [77], and GNT [74] leverage
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Figure S1. A full class list with number of objects per category.

Normal

RGB Depth

A

Figure S2. Examples of the Blender [14] rendered results.
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(c) SfM reconstruction 3D scan

Bottom view Top view

Figure S3. Examples of the segmentation (a), manipulation (b),
and reconstruction (c). In (c), the missing bottom of the SfM
reconstruction from video frames is due to its touch with the table.

Transformers for generalizable NeRF.

Neural Surface Reconstruction. Implicit Neural Rep-
resentations (INR) [3, 12, 31,41, 45,56, 064,68,72,91] of
3D object geometry and appearance with neural networks
have attracted increasing attention in recent years. Some
approaches [35, 38, 53, 88] regard the color of an inter-
section point between the ray and the surface as the ren-
dered color, namely surface rendering, and they typically
rely on accurate object masks. Another trend of recent ap-
proaches [15,54,76,80,87] proposes to leverage neural radi-
ance field with implicit surface representations like Signed
Distance Function (SDF) for higher-quality and mask-free
surface reconstruction from multi-view images. NeuS [76],



Table R1. Point cloud perception robustness analysis on OmniObject3D with different architecture designs. Models are trained on
ModelNet-40 dataset. OA on OmniObject3D evaluates the robustness to OOD styles. mean Corruption Error (mCE) on the corrupted
OmniObject3D-C evaluates the robustness to OOD corruptions. The blue cells denote best in each row, and the red cells denote the worst.

OAciean 7 | OAsiyie 7 || Scale  Jitter ~ Drop-G = Drop-L  Add-G  Add-L  Rotate | mCE |
DGCNN [75] 0.926 0.448 1000 1.000  1.000  1.000  1.000  1.000  1.000 | 1.000
PointNet [59] 0.907 0466 || 0925 0858 0976 0816 1318 0921 0935 | 0.969
PointNet++ [60]  0.930 0.407 1.104 1071 1108 0886  1.101  1.123  1.031 | 1.066
RSCNN [39] 0.923 0393 || 1115 1078 1144 0997 1042 1079 1025 | 1076
SimpleView [24]  0.939 0476 || 0940 0951 0959 1012 1043 1.037 0949 | 0.990
GDANet [84] 0.934 0497 || 0.887 0933 0923 0975  0.884 0921  0.882 | 0.920
PAConv [83] 0.936 0403 || 1.034 1101 1032 1052 1159 1057 1082 | 1.073
CurveNet [37] 0.938 0.500 || 0930 0930 0920 0869 0929 0997  0.907 | 0.929
PCT [26] 0.930 0459 || 0950 0986 1011 0862 0921 0912 1001 | 0.940
RPC [63] 0.930 0472 || 0947 0940 0967 0855 0999 0909 0915 | 0.936

Table R2. Comparisons of 3 single-scene NVS methods on dif-
ferent data types. For all the methods we involve, we can observe
that the Blender setting performs the best; the SfM-wo-bg setting
is a little bit worse due to the motion blur and potential inaccuracy
in SfM pose estimation; the SfM-w-bg setting always achieves the
lowest PSNR, as the background in the unbounded scene intro-
duces further challenges.

Method | Data-type | PSNR (1)

StM-w-bg 22.92

NeRF [48] StM-wo-bg 24.70
Blender 28.07

SfM-w-bg 23.29

Mip-NeRF [4] | StM-wo-bg 25.62
Blender 31.25

SfM-w-bg 14.06

Plenoxel [20] | SfM-wo-bg 19.18
Blender 28.07

VoISDF [87] reconstruct implicit surfaces with an SDF-
based volume rendering scheme, and Voxurf [80] leverages
an explicit volumetric representation for acceleration. Since
dense camera views of scenes are sometimes unavailable,
SparseNeuS [42] and MonoSDF [90] explore surface recon-
struction from sparse views. The former exploits general-
izable priors cross scenes for a generic surface prediction,
while the latter takes advantage of the estimated geometry
cues predicted by pretrained networks.

OmniObject3D can serve as a large-scale benchmark
with realistic photos and meshes for both training and evalu-
ation. It bears a large vocabulary and high diversity in shape
and appearance, offering an opportunity for pursuing more
generalizable and robust novel view synthesis and surface
reconstruction methods.
3D Object Generation. Recent advances in photoreal-
istic 2D image generations [16, 18, 29, 32-34, 57] in-
spire the explorations of 3D content generation. Early ap-
proaches [21, 28,43, 69, 79] extend 2D generation frame-

works to 3D voxels with a high computational cost when
generating high-resolution contents. Some other works
adopt different 3D data formulations, e.g., point cloud [,

, 86, 92] and octree [30] to generate coarse geometry.
OccNet [46], IM-NET [13] generates the 3D meshes with
implicit representation while extracting high-quality sur-
faces is non-trivial. Encouraged by NeRF [48], exten-
sive works [0, 7,25,27,52,55, 66,67, 85, 93] explore 3D-
aware image synthesis rather than mesh generation. Aiming
at generating textured 3D meshes, Textured3DGAN [58]
and DIBR [10] deform template meshes, preventing them
from complex shapes. PolyGen [51], SurfGen [44], and
GET3D [22] generate meshes with arbitrary topology. Dis-
tinguishable from others, GET3D generates diverse meshes
with rich geometry and textures. With the proposed Om-
niObject3D dataset, we extend the benchmarks of realistic
3D generation approaches to large vocabulary and massive
objects, enabling the exploration of better generation qual-
ity and diversity.

C. Additional Experimental Results
C.1. Robust 3D Perception

Following ModelNet-C [63], we perform seven kinds
of out-of-distribution (OOD) corruptions for study, in-
cluding “Scale”, “Jitter”, “Drop Global/Local”, “Add
Global/Local”, and “Rotate”. Please refer to their paper for
a detailed illustration of each corruption type. We calculate
the error under each corruption and the mean Corruption Er-
ror (mCE) is an average of the results. The full evaluation
results corresponding to are shown in Table R1.

C.2. Novel View Synthesis
C.2.1 Single-Scene NVS

Implementation Details. We use the official code and de-
fault settings by NeRF [48], Mip-NeRF [5], and Plenox-
els [20] in this section. For NeRF, we re-weight the fore-
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Figure S4. Qualitative comparisons of single-scene NVS methods in different rendered scenes from our dataset.
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Figure S5. Qualitative comparisons of NVS on the same scenes with different data dypes.

ground and background contents by 1:0.5 to avoid all-black
output. For Plenoxel on the SfM data with background, we
enable the background model provided by the official code
to model the background area.

Qualitative Comparisons of NVS on rendered images.
We describe the performance of three representative meth-
ods in the main text, and we provide some qualitative com-
parisons here in Figure S4, accordingly. Plenoxels are espe-
cially good at modelling high-frequency textures (e.g., the
coconut), while it is less robust then NeRF and mip-NeRF

when dealing with dark textures and concave geometry, suf-
fering from inaccurate geometry. Our dataset helps to pro-
vide a comprehensive evaluation of different methods.

Comparisons of NVS on rendered images and iPhone
videos. We conduct qualitative and quantitative evaluations
on novel view synthesis with several scenes under different
data types, including SfM-wo-bg, SfM-w-bg and Blender.
The SfM-wo-bg and SfM-w-bg settings use images sam-
pled from iPhone videos and camera parameters generated
by COLMAP. The difference between them is whether the



Table R3. Cross-scene novel view synthesis results on 10 categories. We evaluate our benchmarks on 3 unseen scenes per category with
3 source views. In each scene, we take 10 test frames widely distributed around the object by FPS sampling strategy.

Method ‘ Train ‘ Metric ‘ toy train bread cake toyboat hotdog wallet pitaya squash handbag apple
PSNR 15.90 16.80 1547 16.28 1584 2058 18.69 17.81 18.02 19.55

All* SSIM 0.501 0.548 0.522  0.519 0497  0.534 0490 0.576 0.564 0.681
LPIPS 0.480 0456 0480  0.408 0429 0449 0456 0417 0.444 0.403

E‘;e"‘h 0.182 0.155 0.249  0.253 0.127 0261 0.178  0.187 0.229 0.113

PSNR 16.14 16.87 14.60 15.65 16.64 2076 19.09 16.97 18.35 20.40

Cat SSIM 0.515 0.560 0.527  0.444 0520 0.524 0.505 0.548 0.575 0.709
’ LPIPS 0.475 0.463 0488  0.433 0.431 0464 0449 0435 0.444 0.399
MVSNeRF [0] L 10175 0127 0339 0477 0134 0382 0237  0.101 0219  0.112
PSNR 23.16 2582 25.14 2347 2391 27.83 2536  25.68 26.09 30.53

All*-ft SSIM 0.717 0.769 0.745  0.736 0714  0.739 0.710 0.761 0.803 0.845
LPIPS 0.281 0224 0.263  0.228 0248 0293 0.227 0255 0.280 0.215

E‘;e"lh 0.091 0.062 0.081 0.141 0.053  0.078 0.069  0.061 0.130 0.053

PSNR 22.88 25.58 2529  23.80 2344 2738 2546 2540 25.94 30.06

Cat —ft SSIM 0.721 0.758 0.748  0.733 0.698 0.722 0.715  0.759 0.803 0.840
' LPIPS 0.283 0243 0.262  0.226 0280 0.318 0.229 0277 0.283 0.244
£een 0.122  0.053 0.064  0.096 0.060  0.084 0.071  0.048 0.120 0.046

PSNR 17.90 19.08 17.09 17.89 17.77  23.13  20.11 2025 18.36 22.36

ALl SSIM 0.526 0.599 0.538  0.530 0516 0579 0.511  0.632 0.530 0.726
LPIPS 0.430  0.383 0422  0.368 0394 0426 0405 0356 0.451 0.352

£ 0.379 0.327 0.610  0.357 0.338 0419 0.388  0.392 0.847 0.175

PSNR 17.33 1830 16.87 17.13 17.83 2339 19.62 19.05 19.73 21.02

Cat SSIM 0.502  0.554 0525 0491 0498 0579 0485 0.606 0.584 0.684
’ LPIPS 0.449 0415 0446  0.394 0413 0427 0420 0376 0.443 0.371
IBRNet [77] E‘{e‘"h 0.417 0394 0.392  0.169 0.096 0234 0.177 0352 0.336 0.331
PSNR 22.12 27.53 2628  25.80 2289  30.03 2633  29.15 26.74 32.00

All*-ft SSIM 0.683 0.829 0.769  0.834 0.686  0.814 0.764 0.845 0.815 0.885
LPIPS 0.298 0.177 0.238  0.152 0267 0211 0.199 0.177 0.268 0.163

£5en 0.232 0.051 0.079  0.083 0.054  0.036 0.075 0.051 0.073 0.080

PSNR 21.90 26.47 2483 2246 24774 27.68 2641 2537 26.61 30.18

Cat-ft SSIM 0.678 0.804 0.739  0.707 0.755  0.727 0.766  0.745 0.813 0.861
' LPIPS 0.301 0.195 0.261 0.233 0210 0.280 0.197 0254 0.266 0.184
E‘{e"‘h 0.225 0.049 0.070  0.101 0.046  0.063 0.062 0.195 0.065 0.111

PSNR 19.77 21.54 20.77  20.15 2093 2473 21.78 2348 21.30 27.18

All* SSIM 0.647 0.701  0.690  0.661 0.671 0.666  0.606  0.748 0.696 0.833
LPIPS 0.377 0331 0.363  0.315 0339 0.393 0.370 0.283 0.381 0.269
pixeINeRF [59] £5eh 0.142  0.131 0.141 0.109 0.073  0.085 0.114 0.065 0.175 0.061
PSNR 19.91 2093 17.55  20.20 19.63  24.16 20.80 18.59 19.84 24.96

Cat SSIM 0.685 0.702 0.622  0.686 0.645  0.662 0.606  0.667 0.657 0.828
’ LPIPS 0332 0330 0426 0.275 0348  0.392 0367 0342 0.420 0.249
£5en 0.136 0224 0.364 0.119 0.142  0.152 0.243  0.181 0.336 0.054

background is included. The Blender data are rendered by
Blender [14]. Since the image resolutions and foreground
proportions are different among the data types, we calculate
the PSNR metric only in the foreground area for SfM-wo-
bg data and Blender data, whereas for SfM-w-bg data, every
pixel in the image is included PSNR calculation.

Based on the qualitative comparisons in Figure S5, we
observe that for both two selected scenes, the predicted
novel view image under the Blender setting achieves the
best visual quality, resulting in the highest PSNR in Ta-
ble R2. When comparing the two SfM based data types,
we find that the quality of the foreground object from the

SfM-wo-bg data is only slightly better than the other, while
the high background error under the SfM-w-bg setting leads
to a significant drop in performance, as shown in Table R2.
The experimental results shed light on how real-captured
videos introduce further challenges to NeRF-like methods.
We demonstrate that performing robust novel view synthe-
sis with casually captured videos will be an important and
practical topic.



Table R4. Unaligned Cross-scene novel view synthesis results of pixelNeRF-U [89] on 10 categories.

Train | Metric | toy train bread cake toy boat  hot dog wallet pitaya squash  handbag apple
PSNR 18.81 19.92 19.86 19.54 19.64 20.31 20.44 20.74 20.79 21.21

-0.96 -1.62 -0.91 -0.29 -1.29 -4.42 -1.34 -2.74 -0.51 -5.97

Al SSIM 0.59_1 0.625 0.63_6 0.626 0.627 0.628 0.619 0.631 0.635 0.650
-0.056 -0.076 -0.054 -0.035 -0.044 -0.038 +0.013 -0.117 -0.061 -0.183

LPIPS 0.43_2_ 0.406_ 0.405 0.398 0.397 0.401 0.405 0.394 0.397 0.390

-0.055 -0.075 -0.042 -0.083 -0.058 -0.008 -0.035 -0.111 -0.016 -0.121

[ depth 0.145 0.118 0.123 0.132 0.122 0.120 0.119 0.113 0.121 0.117

1 -0.003 +0.013 +0.018 -0.023 -0.049 -0.035 -0.005 -0.048 +0.054 -0.056

PSNR 19.36 19.03 18.46 18.45 18.53 19.41 19.51 19.34 19.38 19.58

-0.55 -1.90 -0.91 -1.75 -1.10 -4.75 -1.29 -0.75 -0.46 -5.38

Cat SSIM 0.637 0.636 0.626 0.624 0.623 0.625 0.616 0.61_4 0.618 0.631
: -0.048 -0.066 +0.004 -0.062 -0.022 -0.037 +0.010 -0.053 -0.039 -0.197
LPIPS 0.392 0.402 0.415 0.400 0.396 0.399 0.403 0.404 0.408 0.40_4

-0.060 -0.072 +0.011 -0.125 -0.048 -0.007 -0.036 -0.062 +0.012 -0.155

[ depth 0.172 0.219 0.260 0.262 0.247 0.251 0.252 0.286 0.293 0.276

1 -0.036 +0.005 +0.104 -0.143 -0.105 -0.099 -0.009 -0.105 +0.043 -0.222

C.2.2 Cross-Scene NVS

Implementation Details. We use the official codes to
evaluate three benchmarks on 10 categories, i.e., toy train,
bread, cake, toy boat, hot dog, wallet, pitaya, squash, hand-
bag, and apple. We split three scenes from each category as
a test-set, and the remaining scenes are used as a train-set.
During training, we randomly sample rays from scenes in
the train-set of each category and use Adam [37] optimizer.
For a fair comparison, we evaluate these methods with the
same source views, i.e., 3 views from nearby 30 views (ex-
plained in Sec. C.3.2) by FPS sampling. Then in a scene
with 100 rendered views, we exclude these 3 source views
and select 10 test views from the remaining 97 views by
FPS criteria again. For MVSNeRF, we pretrain the ‘All*’
with total 300k iterations, and the ‘Cat.’ with 20k to 40k
iterations depending on the number of scenes. In finetuning
stage, we take 3 views as input and additional 13 views sam-
pling for per-scene optimization. Each scene is finetuned
for 15k iterations. For IBRNet, we pretrain the ‘All** with
300k iterations, and the ‘Cat.” with 50k iterations. After
cross-scene training, we further finetune the model with 15k
iterations on each test scene. For pixelNeRF, we train the
‘All*’ with 400k iterations, and the ‘Cat.” with 12k to 30k
iterations depending on the number of scenes. All methods
sample rays within a tight foreground bounding box around
the object.

Detailed Comparisons. The full evaluation results are pre-
sented in Table R3. We additionally provide qualitative
comparisons of 4 cases, each with rendered RGB and depth,
as shown in Figure S6 (we leave an extra 15 pixels of each
edge). We evaluate depth within the foreground masks.
From the visualization, it may seem that methods w/ ’Cat.’
generate more accurate contour than that w/ ‘All*’, contra-

dicting the statement that methods w/ ‘All*’ can learn a bet-
ter geometric cue than that w/ ‘Cat.” in the main context.
However, we find that within the masks, the depth of the
former is generally more precise than that of the latter, obvi-
ously illustrated by “pitaya” (the third case) in pixelNeRF.
It may raise an interesting research topic of how generic
methods can perform both accurately in shape contour and
geometry. After slightly finetuning MVSNeRF and IBRNet
on a test scene, these methods achieve comparable perfor-
mance with scene-specific methods, e.g., NeRF.

Results on Unaligned Coordinate System. We addition-
ally provide a more challenging setting by evaluating Cross-
Scene NVS on an unaligned coordinate system rather than
in a perfectly predefined canonical space. Specifically, we
examine pixelNeRF-U [89], where the coordinate system
of each object is randomly rotated by 0 (~ 60° - A (0, 1))
in three axes and translated by [0.5,0.5,0.5] - N (0,1). As
detailedly illustrated in Table R4 and Figure S7, the PSNR
drops with All*:22.16—21.20, Cat.: 20.65—19.58, partic-
ularly for apple and wallet, and the geometry also suffers
except for bread, cake, and handbag, resulting in a genner-
ally more blurry and irregular-shaped appearance. We in-
fer that since xyz is fed into the network, the coordinates
will implicitly store category-specific priors, e.g., a specific
sampled 3D location in canonical space will learn the prior
of head or tail (other elements) of toy train. Thus the mis-
alignment will tend to impair this learned variance of the
rigid scene. In our experiment, we manually perform non-
alignment in a regular mathematical manner, we believe
this impairment will become more severe when applied to a
naturally-unaligned coordinate system.
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Figure S6. Qualitative comparisons of several cross-scene NVS methods in different scenes from our dataset.
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Figure S7. Qualitative comparison of pixeINeRF-U and pixel-
NeRF. The former shows a more blurry and irregular-shaped ap-
pearance.

C.3. Neural Surface Reconstruction

C.3.1 Dense-View Surface Reconstruction

Implementation Details. We use the publicly available
code for NeuS [76] and VolSDF [87], and we use the code
provided by the authors for Voxurf [80], training with for a
standard number of iteration on each of them. For all the
methods, we do not involve the mask loss as supervision.
Each scene is trained on 100 views. We use the Chamfer
Distance between the reconstructed surface and the ground
truth mesh for evaluation. The distance is calculated in a
normalized space (all coordinates lying within [—1, 1]). We
clip the distance by 0.1 to alleviate the huge effect of out-
liers. We will release the standard evaluation code.
Qualitative Comparisons. In the main text, we split the
categories into three difficulty levels, namely hard, medium,
and easy. Figure S8 shows some examples from each level.
We observe that the “hard” examples usually suffer from
dark and low-texture appearance (e.g., the pan), concave ge-
ometry (e.g., the vase and the kennel), and complex or thin
structures (e.g., the durian, the fork, and the toy train). The
“medium” and “easy” cases usually have a simple geome-
try with proper texture. The wide exploration of geometry
and textures of the dataset helps to provide a comprehensive
evaluation of different methods.

C.3.2 Sparse-View Surface Reconstruction

Implementation Details. For NeuS [76] and
MonoSDF [90], we use FPS sampling to sample 3
views from all the 100 views. We train 10k iterations for
NeuS and 500 epochs for MonoSDF, both being reduced
from the original setting due to the few-view input. For

Table R5. Sparse-view surface reconstruction results with a
range of views.

Chamfer Distance x 103 (})

Method

| 2views 3views 5views 8 views

NeusS [76] 41.06 27.3 12.65 7.96
MonoSDF [90] | 45.35 34.68 23.02 18.97

SparseNeuS [42], we fix the first three examples in each
category as the testing set and skip them when training. We
conduct FPS among the nearest 30 camera poses from a
random reference view at inference time. The fine-tuning
stage of SparseNeuS is not stable: the training usually
collapses before convergence, and the issue also exists for
the officially used DTU dataset. So we report the results
via direct inference for all the experiments.

Detailed Comparisons. In Table 6 of the main text, we
surprisingly find that NeuS can serve as a strong baseline
under the sparse-view setting without bells and whistles.
MonoSDF is enhanced by depth and normal estimations
from pre-trained networks [ 1 7], and it claims a superior per-
formance on DTU with only 3 views as input. However,
MonoSDF does not seem to perform as well as NeuS in
OmniObject3D.

As shown in Figure S9, the NeuS baseline with FPS
sampling is especially good at dealing with thin structures:
the wide-spread views together with the black backgrounds
help to bound the geometry well. However, the depth esti-
mation is especially inaccurate in these scenarios, which is
probably caused by the gap between the training and test-
ing images of the depth estimation network. Nevertheless,
it shows great performance in some cases for maintaining
a coherent shape and adding some geometry details. It is
an interesting problem to explore a robust usage of the esti-
mated geometry cues under different circumstances.
Sparse-view surface reconstruction with a range of view
numbers. In addition to the default setting of 3 views, we
try a range of views (i.e., 2, 3, 5, 8 views) with FPS sam-
pling for NeuS [76] and MonoSDF [90], and the results are
shown in Table. R5. For NeuS, we observe a significant im-
provement in accuracy as the view number increases from
2 to 8, but the 8-view setting (7.96) is still worse than the
100-view setting (6.09) with a clear margin. For MonoSDF,
the improvement begins to slow down when lifting from 5
views to 8 views. This problem is probably due to the inac-
curate depth guidance, as described above.

View Selection Range for Cost Volume Initialization. In
MVSNEeRF [9], due to occlusions, initialized local cost vol-
ume feature is inconsistent with large viewpoint changes,
causing poor geometry extracted from the global density
field. One naive solution is to decrease the interval distance
between source views. Although the constructed local fea-



Figure S8. Examples from different difficulty levels in surface reconstruction.
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Figure S9. A comparison of sparse-view surface reconstruction between NeuS and MonoSDF. The estimated depth and normal maps

used by MonoSDF are shown on the right.

ture will accordingly be more consistent as the occlusion
region reduces, it will encode less source context. To make
a trade-off between feature consistency and richness of en-
coded information, we conduct a comparison on how the
extracted mesh will perform with the number of the nearest
source views in FPS on 15 random categories from three
levels of “difficulty”. We filter the categories with averaged
CD > 0.04, whose geometries are too poor to rely on. Fi-
nally, we remain 5 classes as shown in Figure S10. The ge-
ometric quality shows a fluctuating trend of decreasing and

then increasing with regard to the view range. As a result,
we pick up “30” as a proper view selection range. Similarly,
we find that “30” can also be applied to SparseNeuS [42] for
cascaded geometry volume construction.

C.4. 3D Object Generation

Implementation Details. We use the official code by
GET3D [23] to train all the models. We prepare the multi-
view image dataset by rendering 24 inward-facing multi-
view images per object with Blender [14]. For the large
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Figure S10. Geometric quality with regard to view selection
range.

subset with 100 categories, we train 7k iterations with MSE
loss and Adam optimizer; we train 3k iterations on smaller
subsets (e.g., furniture, fruits, and roys).

Additional Experimental Results and Discussions. We
study the semantic distribution in the main text, where we
use KMeans to cluster 100 random categories into 8 groups,
as shown in Figure S11. We can observe that Group 2 has
the largest number of categories, while they suffer from
a high inner-group divergence (e.g., the peanut, handbag,
mushroom, and hot dog). In contrast, Group 1 contains
many fruits, vegetables, and some other categories that are
similar in shape. The high inner-group similarity enables
them to enhance the learning of each other, and Group 1
is finally able to dominate the generation distribution. The
Group-level analysis reveals how cross-class relationships
affect the generation distribution, which is a critical factor
for generative models trained with large vocabulary datasets
like OmniObject3D. We also provide the distribution of the
four subsets used in this section in Figure S12.

Finally, we provide disentangled interpolation results in
Figure S13 with geometry latent code and texture latent
code, respectively. In the first row, the texture changes with
a fixed shape, and the semantic changes accordingly. In
the second row, when the geometry changes, the texture is
fixed at first while encountering a substantial change along
with the geometry at the end. This indicates that the two
factors are not fully disentangled, and the geometry code
can sometimes affect the texture since the category, geome-
try, and texture are highly correlated with each other in the
dataset. Meanwhile, we observe that complex textures (e.g.,
the cover of a book) usually fail to be well generated, which
is another challenging problem to be explored in the future.
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house monitor kettle
lantern cherry chess
cake conch bread
dumpling
broccoli ...

Highest inner-group similarity.

G1(18)
longan lemon
coconut litchi
mooncake orange
egg peach pear
apple loquat
onion ...

G5 (3)
knife flute
insole
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dinosaur
pad laptop
kite ...

G7(18)
burrito banana
carrot chili nipple
mouse anise
candy candle
chair clock ...

GO (11)
book phone
brush flash-light
hand-cream
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G6 (14)
hat helmet
hamburger drum
picnic-basket
donut bowl ...

G4 (4)
keyboard
drumstick
pan fork

Figure S11. Categories in each group after the KMeans clus-
tering. Categories in Group 1 are highly similar to each other,
while those in Group 2 bear a high inner-group divergence.
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Figure S12. Distributions of the four subsets.

Figure S13. Shape Interpolation. In the first row, we keep the
latent code of geometry fixed and interpolate the latent code of
texture; in the second row, we keep the latent code of texture fixed
and interpolate the latent code of geometry.

References

[1] Panos Achlioptas, Olga Diamanti, loannis Mitliagkas, and
Leonidas Guibas. Learning representations and generative
models for 3d point clouds. In Proceedings of the Interna-
tional Conference on Machine learning (ICML), pages 40—
49,2018. 3

Adel Ahmadyan, Liangkai Zhang, Artsiom Ablavatski, Jian-
ing Wei, and Matthias Grundmann. Objectron: A large scale
dataset of object-centric videos in the wild with pose annota-
tions. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 7822—
7831, 2021. 1

[3] Matan Atzmon, Niv Haim, Lior Yariv, Ofer Israelov, Haggai
Maron, and Yaron Lipman. Controlling neural level sets. In
Advances in Neural Information Processing Systems (NIPS),
volume 32, 2019. 2

Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter
Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.
Mip-nerf: A multiscale representation for anti-aliasing neu-

2

—

[4

—



(5]

(6]

(7]

(8]

(9]

[10]

(11]

(12]

[13]

[14]

[15]

[16]

ral radiance fields. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV), pages 5855—
5864,2021. 1,3

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P
Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded
anti-aliased neural radiance fields. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5470-5479, 2022. 1, 3

Eric R Chan, Connor Z Lin, Matthew A Chan, Koki Nagano,
Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas J
Guibas, Jonathan Tremblay, Sameh Khamis, et al. Efficient
geometry-aware 3d generative adversarial networks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 16123-16133,2022.
3

Eric R Chan, Marco Monteiro, Petr Kellnhofer, Jiajun Wu,
and Gordon Wetzstein. pi-gan: Periodic implicit generative
adversarial networks for 3d-aware image synthesis. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 5799-5809, 2021. 3
Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In Proceedings
of the European Conference on Computer Vision (ECCV),
2022. 1

Anpei Chen, Zexiang Xu, Fugiang Zhao, Xiaoshuai Zhang,
Fanbo Xiang, Jingyi Yu, and Hao Su. Mvsnerf: Fast general-
izable radiance field reconstruction from multi-view stereo.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision (ICCV), pages 14124-14133, 2021. 1,
5,8

Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith,
Jaakko Lehtinen, Alec Jacobson, and Sanja Fidler. Learn-
ing to predict 3d objects with an interpolation-based differ-
entiable renderer. In Advances in Neural Information Pro-
cessing Systems (NIPS), volume 32, 2019. 3

Yunlu Chen, Vincent Tao Hu, Efstratios Gavves, Thomas
Mensink, Pascal Mettes, Pengwan Yang, and Cees GM
Snoek. Pointmixup: Augmentation for point clouds. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 330-345, 2020. 1

Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5939-5948, 2019. 2

Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5939-5948, 2019. 3

Blender Online Community. Blender - a 3d modelling and
rendering package. 2018. 1,2,5,9

Francois Darmon, Bénédicte Bascle, Jean-Clément Devaux,
Pascal Monasse, and Mathieu Aubry. Improving neural
implicit surfaces geometry with patch warping. arXiv.org,
2112.09648, 2021. 2

Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. In Advances in Neural Infor-
mation Processing Systems (NIPS), volume 34, pages 8780—
8794, 2021. 3

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

[26]

(27]

(28]

[29]

Ainaz Eftekhar, Alexander Sax, Jitendra Malik, and Amir
Zamir. Omnidata: A scalable pipeline for making multi-task
mid-level vision datasets from 3d scans. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10786-10796, 2021. 8

Patrick Esser, Robin Rombach, and Bjorn Ommer. Taming
transformers for high-resolution image synthesis. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 12873-12883,2021.
3

Marco Forte and Francois Pitié.
arXiv.org, 2003.07711, 2020. 1
Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 5501-5510, 2022. 1, 3

Matheus Gadelha, Subhransu Maji, and Rui Wang. 3d shape
induction from 2d views of multiple objects. In Proceedings
of the International Conference on 3D Vision (3DV), pages
402411, 2017. 3

Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen,
Kangxue Yin, Daiqing Li, Or Litany, Zan Gojcic, and Sanja
Fidler. Get3d: A generative model of high quality 3d tex-
tured shapes learned from images. arXiv.org, 2209.11163,
2022. 3

Jun Gao, Tianchang Shen, Zian Wang, Wenzheng Chen,
Kangxue Yin, Daiging Li, Or Litany, Zan Gojcic, and Sanja
Fidler. Get3d: A generative model of high quality 3d tex-
tured shapes learned from images. In Advances in Neural
Information Processing Systems (NIPS), 2022. 9

Ankit Goyal, Hei Law, Bowei Liu, Alejandro Newell, and
Jia Deng. Revisiting point cloud shape classification with
a simple and effective baseline. In Proceedings of the In-
ternational Conference on Machine learning (ICML), pages
3809-3820, 2021. 3

Jiatao Gu, Lingjie Liu, Peng Wang, and Christian Theobalt.
Stylenerf: A style-based 3d-aware generator for high-
resolution image synthesis. Proceedings of the International
Conference on Learning Representations (ICLR), 2022. 3

F, b, alpha matting.

Meng-Hao Guo, Jun-Xiong Cai, Zheng-Ning Liu, Tai-Jiang
Mu, Ralph R Martin, and Shi-Min Hu. Pct: Point cloud
transformer. Computational Visual Media, 7(2):187-199,
2021. 3

Zekun Hao, Arun Mallya, Serge Belongie, and Ming-Yu Liu.
Gancraft: Unsupervised 3d neural rendering of minecraft
worlds. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), pages 14072-14082,
2021. 3

Philipp Henzler, Niloy J Mitra, and Tobias Ritschel. Escap-
ing plato’s cave: 3d shape from adversarial rendering. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 9984-9993, 2019. 3

Xun Huang, Arun Mallya, Ting-Chun Wang, and Ming-Yu
Liu. Multimodal conditional image synthesis with product-
of-experts gans. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 91-109, 2022. 3



(30]

(31]

(32]

(33]

[34]

(35]

(36]

(37]

(38]

(39]

(40]

[41]

[42]

Moritz Ibing, Gregor Kobsik, and Leif Kobbelt. Octree trans-
former: Autoregressive 3d shape generation on hierarchi-
cally structured sequences. arXiv.org, 2111.12480, 2022. 3
Yue Jiang, Dantong Ji, Zhizhong Han, and Matthias Zwicker.
Sdfdiff: Differentiable rendering of signed distance fields for
3d shape optimization. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1251-1261, 2020. 2

Tero Karras, Miika Aittala, Samuli Laine, Erik Hirkonen,
Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Alias-
free generative adversarial networks. In Advances in Neural
Information Processing Systems (NIPS), volume 34, pages
852-863, 2021. 3

Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4401-4410,
2019. 3

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten,
Jaakko Lehtinen, and Timo Aila. Analyzing and improv-
ing the image quality of stylegan. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 8110-8119, 2020. 3

Petr Kellnhofer, Lars C Jebe, Andrew Jones, Ryan Spicer,
Kari Pulli, and Gordon Wetzstein. Neural lumigraph render-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 4287—
4297,2021. 2

Sihyeon Kim, Sanghyeok Lee, Dasol Hwang, Jaewon Lee,
Seong Jae Hwang, and Hyunwoo J Kim. Point cloud aug-
mentation with weighted local transformations. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 548-557, 2021. 1

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv.org, 1412.6980, 2014. 6
Shaohui Liu, Yinda Zhang, Songyou Peng, Boxin Shi, Marc
Pollefeys, and Zhaopeng Cui. Dist: Rendering deep implicit
signed distance function with differentiable sphere tracing.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 2019-2028,
2020. 2

Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong
Pan. Relation-shape convolutional neural network for point
cloud analysis. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
8895-8904, 2019. 3

Yuan Liu, Sida Peng, Lingjie Liu, Qiangian Wang, Peng
Wang, Christian Theobalt, Xiaowei Zhou, and Wenping
Wang. Neural rays for occlusion-aware image-based render-
ing. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 7824—
7833, 2022. 1

Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel
Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-
umes: Learning dynamic renderable volumes from images.
arXiv.org, 1906.07751, 2019. 2

Xiaoxiao Long, Cheng Lin, Peng Wang, Taku Komura,
and Wenping Wang. Sparseneus: Fast generalizable neu-

(43]

(44]

[45]

[40]

(47]

(48]

(49]

(50]

(51]

(52]

(53]

[54]

ral surface reconstruction from sparse views.
2206.05737,2022. 3, 8,9

Sebastian Lunz, Yingzhen Li, Andrew Fitzgibbon, and Nate
Kushman. Inverse graphics gan: Learning to generate 3d
shapes from unstructured 2d data. arXiv.org, 2002.12674,
2020. 3

Andrew Luo, Tianqin Li, Wen-Hao Zhang, and Tai Sing Lee.
Surfgen: Adversarial 3d shape synthesis with explicit sur-
face discriminators. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
16238-16248, 2021. 3

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 4460-4470, 2019. 2

Lars Mescheder, Michael Oechsle, Michael Niemeyer, Se-
bastian Nowozin, and Andreas Geiger. Occupancy networks:
Learning 3d reconstruction in function space. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 44604470, 2019. 3

Ben Mildenhall, Peter Hedman, Ricardo Martin-Brualla,
Pratul P Srinivasan, and Jonathan T Barron. Nerf in the
dark: High dynamic range view synthesis from noisy raw im-
ages. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 16190—
16199, 2022. 1

Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In Proceedings of the European Conference on Com-
puter Vision (ECCV), pages 405-421, 2020. 1, 3

Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka,
Niloy J. Mitra, and Leonidas J. Guibas. Structurenet: Hier-
archical graph networks for 3d shape generation. arXiv.org,
1908.00575, 2019. 3

Thomas Miiller, Alex Evans, Christoph Schied, and Alexan-
der Keller. Instant neural graphics primitives with a mul-
tiresolution hash encoding. ACM Transactions on Graphics,
2022. 1

Charlie Nash, Yaroslav Ganin, SM Ali Eslami, and Peter
Battaglia. Polygen: An autoregressive generative model of
3d meshes. In Proceedings of the International Conference
on Machine learning (ICML), pages 7220-7229, 2020. 3
Michael Niemeyer and Andreas Geiger. Giraffe: Repre-
senting scenes as compositional generative neural feature
fields. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 11453—
11464, 2021. 3

Michael Niemeyer, Lars Mescheder, Michael Oechsle, and
Andreas Geiger. Differentiable volumetric rendering: Learn-
ing implicit 3d representations without 3d supervision. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 3504-3515,
2020. 2

Michael Oechsle, Songyou Peng, and Andreas Geiger.
Unisurf: Unifying neural implicit surfaces and radiance

arXiv.org,



[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

fields for multi-view reconstruction. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 5589-5599, 2021. 2

Roy Or-El, Xuan Luo, Mengyi Shan, Eli Shecht-
man, Jeong Joon Park, and Ira Kemelmacher-Shlizerman.
Stylesdf: High-resolution 3d-consistent image and geome-
try generation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
13503-13513,2022. 3

Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 165-174,2019.
2

Taesung Park, Ming-Yu Liu, Ting-Chun Wang, and Jun-Yan
Zhu. Semantic image synthesis with spatially-adaptive nor-
malization. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
2337-2346, 2019. 3

Dario Pavllo, Jonas Kohler, Thomas Hofmann, and Aurelien
Lucchi. Learning generative models of textured 3d meshes
from real-world images. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages
13879-13889, 2021. 3

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.
Pointnet: deep learning on point sets for 3d classification and
segmentation. corr abs/1612.00593 (2016). In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 652-660, 2017. 1, 3
Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J
Guibas. Pointnet++: Deep hierarchical feature learning on
point sets in a metric space. In Advances in Neural Informa-
tion Processing Systems (NIPS), volume 30, 2017. 3
Xuebin Qin, Zichen Zhang, Chenyang Huang, Masood De-
hghan, Osmar R Zaiane, and Martin Jagersand. U2-net: Go-
ing deeper with nested u-structure for salient object detec-
tion. Pattern Recognition, 106:107404, 2020. 1

Jeremy Reizenstein, Roman Shapovalov, Philipp Henzler,
Luca Sbordone, Patrick Labatut, and David Novotny. Com-
mon objects in 3d: Large-scale learning and evaluation of
real-life 3d category reconstruction. In Proceedings of the
IEEE/CVF International Conference on Computer Vision
(ICCV), pages 10901-10911, 2021. 1

Jiawei Ren, Liang Pan, and Ziwei Liu. Benchmarking and
analyzing point cloud classification under corruptions. In
Proceedings of the International Conference on Machine
learning (ICML), 2022. 1, 3

Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned
implicit function for high-resolution clothed human digitiza-
tion. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV), pages 2304-2314, 2019.
2

Johannes L Schonberger and Jan-Michael Frahm. Structure-
from-motion revisited. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 41044113, 2016. 1

[66]

[67]

[68]

[69]

[70]

(71]

(72]

(73]

(74]

[75]

[76]

(771

Katja Schwarz, Yiyi Liao, Michael Niemeyer, and Andreas
Geiger. Graf: Generative radiance fields for 3d-aware image
synthesis. In Advances in Neural Information Processing
Systems (NIPS), volume 33, pages 20154-20166, 2020. 3
Katja Schwarz, Axel Sauer, Michael Niemeyer, Yiyi Liao,
and Andreas Geiger. Voxgraf: Fast 3d-aware image synthesis
with sparse voxel grids. arXiv.org, 2206.07695, 2022. 3
Vincent Sitzmann, Michael Zollhofer, and Gordon Wet-
zstein.  Scene representation networks: Continuous 3d-
structure-aware neural scene representations. In Advances in
Neural Information Processing Systems (NIPS), volume 32,
2019. 2

Edward J Smith and David Meger. Improved adversarial
systems for 3d object generation and reconstruction. In
Proceedings of the Conference on Robot Learning (CoRL),
pages 87-96, 2017. 3

Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages
5459-5469, 2022. 1

Saeid Asgari Taghanaki, Jieliang Luo, Ran Zhang, Ye Wang,
Pradeep Kumar Jayaraman, and Krishna Murthy Jatavallab-
hula. Robustpointset: A dataset for benchmarking robustness
of point cloud classifiers. arXiv.org, 2011.11572, 2020. 1
Briac Toussaint, Maxime Genisson, and Jean-Sébastien
Franco. Fast Gradient Descent for Surface Capture Via Dif-
ferentiable Rendering. In Proceedings of the International
Conference on 3D Vision (3DV), pages 1-10, 2022. 2
Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua,
Thanh Nguyen, and Sai-Kit Yeung. Revisiting point cloud
classification: A new benchmark dataset and classification
model on real-world data. In Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV), pages
1588-1597, 2019. 1

Mukund Varma, Peihao Wang, Xuxi Chen, Tianlong Chen,
Subhashini Venugopalan, Zhangyang Wang, and Madras. Is
attention all nerf needs? arXiv.org, 2207.13298, 2022. 1
Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler,
Jonathan T Barron, and Pratul P Srinivasan. Ref-nerf: Struc-
tured view-dependent appearance for neural radiance fields.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 5481-5490,
2022. 1

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku
Komura, and Wenping Wang. Neus: Learning neural im-
plicit surfaces by volume rendering for multi-view recon-
struction. In Advances in Neural Information Processing
Systems (NIPS), volume 34, pages 27171-27183, 2021. 2,
8

Qiangian Wang, Zhicheng Wang, Kyle Genova, Pratul P
Srinivasan, Howard Zhou, Jonathan T Barron, Ricardo
Martin-Brualla, Noah Snavely, and Thomas Funkhouser. Ibr-
net: Learning multi-view image-based rendering. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 4690-4699, 2021.
1,5



(78]

[79]

(80]

[81]

(82]

[83]

[84]

[85]

[86]

[87]

(88]

(89]

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma,
Michael M Bronstein, and Justin M Solomon. Dynamic
graph cnn for learning on point clouds. ACM Transactions
on Graphics, 38(5):1-12, 2019. 1, 3

Jiajun Wu, Chengkai Zhang, Tianfan Xue, Bill Freeman, and
Josh Tenenbaum. Learning a probabilistic latent space of ob-
ject shapes via 3d generative-adversarial modeling. In Ad-
vances in Neural Information Processing Systems (NIPS),
volume 29, 2016. 3

Tong Wu, Jiaqi Wang, Xingang Pan, Xudong Xu, Chris-
tian Theobalt, Ziwei Liu, and Dahua Lin. Voxurf: Voxel-
based efficient and accurate neural surface reconstruction.
arXiv.org, 2208.12697, 2022. 2, 3, 8

Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-
guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d
shapenets: A deep representation for volumetric shapes. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 1912-1920,
2015. 1

Tiange Xiang, Chaoyi Zhang, Yang Song, Jianhui Yu, and
Weidong Cai. Walk in the cloud: Learning curves for point
clouds shape analysis. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (ICCV), pages
915-924,2021. 3

Mutian Xu, Runyu Ding, Hengshuang Zhao, and Xiao-
juan Qi. Paconv: Position adaptive convolution with dy-
namic kernel assembling on point clouds. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 3173-3182, 2021. 3

Mutian Xu, Junhao Zhang, Zhipeng Zhou, Mingye Xu, Xi-
aojuan Qi, and Yu Qiao. Learning geometry-disentangled
representation for complementary understanding of 3d ob-
ject point cloud. In Proceedings of the Conference on Ar-
tificial Intelligence (AAAI), volume 35, pages 3056-3064,
2021. 3

Yinghao Xu, Sida Peng, Ceyuan Yang, Yujun Shen, and
Bolei Zhou. 3d-aware image synthesis via learning struc-
tural and textural representations. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 18430-18439, 2022. 3
Guandao Yang, Xun Huang, Zekun Hao, Ming-Yu Liu, Serge
Belongie, and Bharath Hariharan. Pointflow: 3d point cloud
generation with continuous normalizing flows. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 4541-4550, 2019. 3

Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Vol-
ume rendering of neural implicit surfaces. In Advances in
Neural Information Processing Systems (NIPS), volume 34,
pages 48054815, 2021. 2, 3, 8

Lior Yariv, Yoni Kasten, Dror Moran, Meirav Galun, Matan
Atzmon, Basri Ronen, and Yaron Lipman. Multiview neu-
ral surface reconstruction by disentangling geometry and ap-
pearance. In Advances in Neural Information Processing
Systems (NIPS), volume 33, pages 2492-2502, 2020. 2
Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelnerf: Neural radiance fields from one or few images.
In Proceedings of the IEEE/CVF Conference on Computer

(90]

[91]

(92]

(93]

Vision and Pattern Recognition (CVPR), pages 4578-4587,
2021. 1,5,6

Zehao Yu, Songyou Peng, Michael Niemeyer, Torsten Sat-
tler, and Andreas Geiger. Monosdf: Exploring monocular
geometric cues for neural implicit surface reconstruction. In
Advances in Neural Information Processing Systems (NIPS),
2022. 3,8

Jingyang Zhang, Yao Yao, and Long Quan. Learning signed
distance field for multi-view surface reconstruction. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), pages 6525-6534, 2021. 2

Lingi Zhou, Yilun Du, and Jiajun Wu. 3d shape generation
and completion through point-voxel diffusion. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 5826-5835, 2021. 3

Peng Zhou, Lingxi Xie, Bingbing Ni, and Qi Tian. Cips-
3d: A 3d-aware generator of gans based on conditionally-
independent pixel synthesis. arXiv.org, 2110.09788, 2021.
3



	. Additional Information of OmniObject3D
	. Related Works
	. Additional Experimental Results
	. Robust 3D Perception
	. Novel View Synthesis
	Single-Scene NVS
	Cross-Scene NVS

	. Neural Surface Reconstruction
	Dense-View Surface Reconstruction
	Sparse-View Surface Reconstruction

	. 3D Object Generation


