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1. Network Structure

1.1. Network structure for semantic segmentation

As in Fig. 1, we use a U-Net structure for semantic seg-
mentation tasks where we specify a number of base chan-
nels, and then have each downsampling stage to use suc-
cessively more channels. The U-Net contains 5 resolution
levels. For each resolution level, we use grid subsampling
to downsample the input point clouds, then followed by sev-
eral pointconvformer residual blocks. The number of layers
in the blocks at each level is [3, 2, 4, 6, 6] respectively for
the main model. For the Lite model at 10cm voxel size,
the number of layers is [3, 2, 2, 2, 2] at each level, respec-
tively. For the Lite model at 5cm voxel size, the num-
ber of layers at each level is [3, 3, 3, 3, 3], respectively (Ta-
ble 1). For the 9.4M model at the 2cm grid resolution, be-
cause it is too fine to be captured by 5 downsampling lev-
els, we utilize a sixth block which contains 2 layers. For
the 5.6M parameter model at the 2cm resolution, we fol-
lowed PointTransformerv2 to use a set of resolution lev-
els of [0.02, 0.06, 0.15, 0.375, 0.9375], and also replaced
the 3 costly initial layers with a single linear layer, which
significantly reduced the size and runtime of the model.
This model obtained only 73.0% without mix3D, however,
mix3D boosted its performance to 74.4% which is as good
as the original model that is significantly larger. For the
full model, we have Cmid = 16, and for the Lite model we
have Cmid = 4 which greatly reduced the parameter count
with no performance drop at the Lite model scale. Latter
blocks have more layers since they are cheaper to compute,
similar to image convolutional models. For deconvolution,
we just use PointConv as described in the main paper. And
each block has a single PointConvTranspose layer, which is
a PointConv layer that upsamples to locations without any
features. For the encoder, we utilize the bottleneck residual
architecture described in the paper. For the decoder, be-
cause the output dimensionality is always smaller than the
input dimensionality, we find that having a bottleneck to
1/4 of the output dimensionality reduced too much capac-
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ity to the model and reduced performance, hence we did
not utilize the bottleneck architecture in the decoder and
directly performed PointConv on the original input/output
dimensionality.

1.2. Network structure for scene flow estimation

Fig. 2 illustrates the network structure we used for
scene flow estimation. Following the network structure of
PointPWC-Net [10], which is a coarse-to-fine network de-
sign, the PCFPWC-Net also contains 5 modules, including
the feature pyramid network, cost volume layers, upsam-
pling layers, warping layers, and the scene flow predictors.
We replace the PointConv in the Feature pyramid layers
with the PointConvFormer and keep the rest of the struc-
ture the same as the original version of PointPWC-Net for
fair comparison.

2. Evaluation Metrics for Scene flow estimation
Evaluation Metrics. For comparison, we use the same
metrics as [10]. Let SFΘ denote the predicted scene flow,
and SFGT be the ground truth scene flow. The evaluate
metrics are computed as follows:
• EPE3D(m): ∥SFΘ − SFGT ∥2 averaged over each point
in meters.
• Acc3DS: the percentage of points with EPE3D < 0.05m
or relative error < 5%.
• Acc3DR: the percentage of points with EPE3D < 0.1m
or relative error < 10%.
• Outliers3D: the percentage of points with EPE3D> 0.3m
or relative error > 10%.
• EPE2D(px): 2D end point error obtained by projecting
point clouds back to the image plane.
• Acc2D: the percentage of points whose EPE2D < 3px or
relative error < 5%.

3. Ablation Studies
In this section, we perform thorough ablation experi-

ments to investigate our proposed PointConvFormer. The
ablation studies are conducted on the ScanNet [2] dataset.
For efficiency, we downsample the input point clouds with
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Input Grid Size 2cm 5cm 10cm
Downsampling levels (cm) 2, 5, 10, 20, 40, 80 5, 10, 20, 40, 80 10, 20, 40, 80, 160

Number of Layers in PointConvFormer 3, 2,4,6,6,2 3, 2,4,6,6 3,2,4,6,6
Number of Layers in PointConvFormer-Lite N/A 3, 3,3,3,3 2,2,2,2,2

Table 1. Downsampling grid levels and number of layers at each level for different PointConvFormer models

Grid subsampling PointConvFormer Blocks PointConvTranspose
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Figure 1. The network structure of semantic segmentation. We use a U-Net structure for semantic segmentation tasks. The U-Net
contains 5 resolution levels. For each resolution level, we use grid subsampling to downsample the input point clouds, then followed by
several pointconvformer residual blocks. For deconvolution, we just use PointConv as described in the main paper. We set N = 64 for
ScanNet [2] Dataset and N = 48 for SemanticKitti [1] Dataset. (Best viewed in color.)

a grid-subsampling method [8] with a grid size of 10cm as
in [7].
Number of neighbours. We first conduct experiments on
the neighbourhood size k in the PointConvFormer for fea-
ture aggregation. The results are reported in Table. 2. The
best result is achieved with a neighbourhood size of 16.
Larger neighbourhood sizes of 32, 48 do not introduce sig-
nificant gains on the result, and 48 actually decreased the
performance a bit, which may be caused by introducing ex-
cessive less relevant features in the neighbourhood [11]. We
choose 16 based on similar performance to 32 and signifi-
cantly smaller memory footprint and faster speed.

Table 2. Ablation Study. Number of neighbours in each local neigh-
bourhood.

Nieghbourhood Size 4 8 16 32 48
mIoU(%) 64.61 69.54 71.40 71.19 69.84

Table 3. Ablation Study. Number of heads.

Number of Head 2 4 8 16
mIoU(%) 70.71 70.58 71.40 70.97

Number of heads in ψ. As described in the main paper,
our PointConvFormer could employ the multi-head mech-
anism to further improve the representation capabilities of
the model. We conduct ablation experiments on the number
of heads in the PointConvFormer. The results are shown
in Table. 3. From Table. 3, we find that PointConvFormer

achieves the best result with 8 heads.

Decoder cmid PointConv and PointConvFormer implemen-
tations lead to a dimensionality expansion of the network
that is cmid times the size of the input dimensionality, hence
significantly increase the number of parameters in the sub-
sequent linear layer Wl. One empirical contribution in se-
mantic segmentation we made is that we found that the de-
coder does not really need this dimensionality expansion,
which leads to significant savings in the number of parame-
ters. In Table 4, it is shown that adding 3 million parameters
by using a cmid of 16 in the decoder only leads to a small
improvement of 0.4%, hence in our model we choose to
set cmid = 1 in the decoder of segmentation models, since
those parameters could be used better elsewhere. Parameter
savings here and the bottleneck blocks allow us to use more
layers yet still have a smaller model than [3].

cmid in decoder 1 3 4 8 16
mIoU (%) 71.4 71.5 70.8 71.5 71.8

# Params (M) 5.48 5.90 6.11 6.96 8.64

Table 4. Different cmid in the decoder. cmid of 1 in the decoder
did not significantly lower the performance, yet saves a significant
amount of parameters, hence we choose it in the final model
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Figure 2. The network structure of PointPWC-Net with PointConvFormer. The feature pyramid is built with blocks of PointCon-
vFormers. As a result, there are 4 resolution levels in the PointPWC-Net. At each level, the features of the source point cloud are warped
according to the upsampled coarse flow. Then, the cost volume are computed using the warped source features and target features. Finally,
the scene flow predictor predicts finer flow at the current level using a PointConv with features from the first point cloud, the cost volume,
and the upsampled flow. (Best viewed in color.)

4. More Result Visualizations

Fig. 3 is the visualizations of the comparison among
PointConv [9], Point Transformer [11] and PointCon-
vFormer on the ScanNet dataset [2]. We observe that
PointConvFormer is able to achieve better predictions with
fine details comparing with PointConv [9] and Point Trans-
former [11]. Interestingly, it seems that PointConvFormer
is usually able to find the better prediction out of Point-
Conv [9] and Point Transformer [11], showing that its novel
design brings the best out of both operations.

Fig. 4 illustrates the prediction of PointConvFormer on
the SemanticKitti dataset [1]. Fig. 5, and Fig.6 are the
comparison between the prediction of PointPWC [10] and
PCFPWC-Net on the FlyingThings3D [4] and the KITTI
Scene Flow 2015 dataset [6]. Please also refer to the video
for better visualization.
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are filtered for a better visualization. (Best viewed in color)
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Figure 4. SemanticKitti result visualization. We visualize the SemanticKitti prediction results from our PointConvFormer. Each column
is a scan from SemanticKitti validation set. The first row is the input, the second row is the ground truth, the third row is our prediction.
(Best viewed in color.)
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FlyingThings3D

Figure 5. Qualitative comparison between PointPWC-Net and PCFPWC-Net (FlyingThings3D [5]). (a) is the visualization of the
FlyingThings3D dataset. (b) is the visualization of the KITTI dataset. Green points are the source point cloud. Blue points are the points
warped by the correctly predicted scene flow. The predicted scene flow belonging to Acc3DR is regarded as a correct prediction. For the
points with incorrect predictions, we use the ground truth scene flow to warp them and the warped results are shown as red points. (Best
viewed in color.)
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Figure 6. Qualitative comparison between PointPWC-Net and PCFPWC-Net (KITTI [6]). Green points are the source point cloud.
Blue points are the points warped by the correctly predicted scene flow. The predicted scene flow belonging to Acc3DR is regarded as a
correct prediction. For the points with incorrect predictions, we use the ground truth scene flow to warp them and the warped results are
shown as red points. (d) is a failure case, where the points on the wall or ground/road are hard to find accurate correspondences for both
PointPWC and PCFPWC. (Best viewed in color.)
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