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Figure 1. Dehazing results of data captured by us. The proposed RIDCP performs well on both daytime and nighttime.

Abstract

Our supplementary materials give more details of our
RIDCP and more experiments results, which can be sum-
marized as follows:

• We provide the detailed architectures and the training
objectives of the pre-trained VQGAN network and our
RIDCP.

• We provide more visual results on RTTS to demonstrate
the superior performance of the proposed RIDCP.

• We provide more qualitative comparisons to prove the
effectiveness of HQPs and the proposed phenomeno-
logical degradation pipeline.

• We provide a video demo to show our RIDCP’s poten-
tial in real video dehazing.

1. Network Details

1.1. Detailed Architecture

Table 1 illustrates the detailed architecture of our RIDCP
and the correspondence output size. Each encoder layer is

consist of a down-sampling convolutional layer with a slid-
ing stride of 2 and two residual layers [7]. Each decoder
layer is consist of an up-sampling operation, a convolutional
layer, and two residual layers [7].

1.2. Traning Objectives

VQGAN. Since the vector-quantized operation is non-
differentiable, VQGAN is end-to-end trained by copying
the gradients of Gvq to Evq [1]. The optimization strat-
egy can be divided into two parts, which are minimizing the
loss after reconstruction and after feature matching, respec-
tively. For the first part, the loss function can be formulated
as:

Lrec = ||x′ − x||1 + Lper + Ladv, (1)

where Lper and Ladv are perceptual loss [8] and adversarial
loss [9], respectively. And for codebook optimization, the
loss function can be written as:

Lcodebook = ||sg(ẑ)− zq||22 + β||sg(zq)− ẑ||22
+γ||CONV (zq)− ϕ(x)||22,

(2)

where sg(·) is the stop-gradient operation, and β =
0.25, γ = 0.1 respectively. The last term of Lcodebook is
a semantic guided regularization term follow [2], where
CONV is a simple convolutional layer, and ϕ is the pre-



Layers Configurations Output Size
Input RGB Image h× w × 3

Conv1 c = 64 k = 3 h× w × 64

Enc1 c = 128 k = 3 h
2 ×

w
2 ×128

Enc2 c = 256 k = 3 h
4 ×

w
4 ×256

RSTB

c = 256

h = 8

ws = 8

× 4 h
4 ×

w
4 ×256

Conv2 c = 512 k = 1 h
4 ×

w
4 ×512

Codebook c = 512 K = 1024 h
4 ×

w
4 ×512

Conv3 c = 256 k = 1 h
4 ×

w
4 ×256

Dec1 vq c = 128 k = 3 h
2 ×

w
2 ×128

Dec2 vq c = 64 k = 3 h× w × 64

Dec1 c = 128 k = 3 h
2 ×

w
2 ×128

Dec2 c = 64 k = 3 h× w × 64

Conv4 c = 3 k = 3 h× w × 3

Table 1. Architecture details of the RIDCP. c denotes the output
channel number, k represents the kernel size, and K is the code-
book size. h and ws are number of heads and window size respec-
tively.

trained VGG19 [12]. Finally, the total loss of VQGAN is:

Lvq = Lrec + Lcodebook. (3)

RIDCP. For encoder E, we use pretrained VQGAN to
teach it to find the correct code. Assuming that the input
hazy image is xh and the clear counterpart is xgt, we can
get features ẑh = E(xh) and zqgt = M(Evq(xgt)). The
loss function LE to optimize E can be formulated as:

LE = ||ẑh − zqgt||22 + λstyle||Ψ(ẑh −Ψ(zqgt))||22+

λadv

∑
i

−E[D(ẑih)],
(4)

where Ψ is the Gram matrix calculation to build style
loss [5] and D is the discriminator to supervise E adver-
sarially. And xgt is used for supervising G, which can be
written as:

LG = ||y − xgt||1 + λper||ϕ(y)− ϕ(xgt)||22, (5)

where y is the output and ϕ the pretrained VGG16 [12].
Besides, the gradients of LG do not propagate backwards
to E.

2. Experiments Results
Since there is no ground-truth for real image dehazing

tasks, quantitative metrics are difficult to reflect the true
performance of the dehazing algorithms. Meanwhile, we

provide extensive qualitative results in the section to fur-
ther demonstrate the superior performance of the proposed
RIDCP and the effectiveness of each key component.

2.1. More Visual Results

Figure 1 presents two dehazing cases on our own-
captured data. Our dehazing method performs well on both
daytime and nighttime scenes. Figure 2, 3 and 4 illus-
trate more visual comparisons with several state-of-the-art
methods on RTTS [10] dataset. As we can see, the pro-
posed RIDCP achieves satisfactory performance and main-
tains stable dehazing ability in scenes with dense haze and
heavy color bias.

2.2. Ablation Study

We analyze the effectiveness of HQPs and the proposed
phenomenological degradation pipeline. In Figure 5, we
can observe that HQPs can help the network generate results
with better brightness and lower color bias. Figure 6 shows
the significant improvement in dehazing capability brought
by our pipeline.

3. Broader Impacts
Our RIDCP performs well on real-world hazy scenes,

which can possibly be applied to some industrial tasks like
automatic driving and computational photography. More-
over, the proposed phenomenological degradation pipeline
can also generally boost the performance of dehazing algo-
rithms, which is beneficial for the development of real im-
age dehazing. Thus, we believe our work will bring positive
impacts on both academia and industry. As a typical low-
level vision work, this paper will not bring negative impacts
to society.
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(a) Hazy image (b) MSBDN [4] (c) Dehamer [6] (d) PSD [3] (e) D4 [13] (f) DAD [11] (g) RIDCP

Figure 2. More visual comparisons on RTTS. Zoom-in for best view.



(a) Hazy image (b) MSBDN [4] (c) Dehamer [6] (d) PSD [3] (e) D4 [13] (f) DAD [11] (g) RIDCP

Figure 3. More visual comparisons on RTTS. Zoom-in for best view.



(a) Hazy image (b) MSBDN [4] (c) Dehamer [6] (d) PSD [3] (e) D4 [13] (f) DAD [11] (g) RIDCP

Figure 4. More visual comparisons on RTTS. Zoom-in for best view.



(a) Hazy image (b) w/o HQPs (c) Full model

Figure 5. Ablation results on HQPs.

(a) Hazy image (b) OTS (c) Haze4K (d) Our pipeline
Figure 6. Ablation results on the proposed phenomenological
degradation pipeline.
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