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1. Methods

1.1. Algorithm

Our Structured Sparsity Learning (SSL) algorithm is
summarized in Alg. 1.

1.2. More Experimental Settings

When finetuning the pruned models on REDS [6], fol-
lowing BasicVSR, we use a sequence of 15 frames as in-
puts, and loss is computed for the 15 output images. When
finetuning on Vimeo-90K [7], we temporally augment the
sequence by flipping the original input sequence to allow
longer propagation, as BasicVSR [1] did. In other words,
we train with a sequence of 14 frames on Vimeo-90K. Dur-
ing inference, we take the whole video sequence as input.
We use PyTorch to implement our models with 4 Tesla
V100 GPUs. Codes will be made publicly available.

2. Experimental Results

2.1. Regularization Visualization

To understand how sparsity-inducing regularization
works, in the Fig. 6 of main paper, we plot the average
scaling factors of the “conv15 1” of the forward network.
Here, we show more average scaling factors of the forward,
backward, and upsampling networks in the BasicVSR [1]
during applying regularization at 0.5 pruning ratio. The av-
erage scaling factor is split into two parts, pruned and kept.
As seen, the average scaling factor γ of the pruned filters
decreases as the corresponding penalty term αγ becomes
stronger. Besides, it is interesting that the average scaling
factor of the kept filters will increase without any regulariza-
tion term to enforce them to be larger. It means that, as the
unimportant filters are removed, the network will strengthen
the kept filters to compensate for the performance, which is
similar to the compensation effect in the human brain.
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2.2. The Propagation Error after Pruning

We test the average value of the hidden state after prun-
ing without finetuning on REDS4. The results are shown
in Fig. 2. The forward network propagates the hidden state
from index 0 to 99, and its average values of the hidden state
will become larger as propagation steps increase. Similarly,
the backward network propagates the hidden state from in-
dex 99 to 0, and its average values of the hidden state in-
crease with propagation. Therefore, the error of the hidden
state will accumulate with propagation steps increasing af-
ter pruning for preserving the filters with large L1-norms.
Thus, we introduce the Temporal Finetuning (TF) in fine-
tuning stage to guarantee the accuracy of temporal informa-
tion propagation to further improve the performance of the
pruned VSR network.

2.3. More Visual Comparisons

As the same settings in the paper Sec. 4.1, we use Ba-
sicVSR and BasicVSR-uni as the backbones. We apply L1-
norm, ASSL, and our SSL to the BasicVSR, obtaining L1-
norm-bi, ASSL-bi, and SSL-bi, respectively, at 0.5 pruning
ratio. Similarly, we apply different pruning schemes with
0.5 pruning ratio to BasicVSR-uni, obtaining BasicVSR-
uni-lite, L1-norm-uni, ASSL-uni, and SSL-uni. More-
over, we reduce the channels of BasicVSR and BasicVSR-
uni to obtain lightweight VSR models BasicVSR-lite and
BasicVSR-uni-lite, respectively. We provide more visual
comparisons in Fig. 3. We can observe that our SSL
better alleviate the blurring artifacts compared with other
lightweight VSR method (EDVR-M) and pruning schemes.
This demonstrates the superiority of our method and means
that SSL can prune the redundant filters and maintain most
representation ability.

3. Limitations
In our work, we mainly focus on the most commonly

used recurrent network based VSR networks, which con-
sists of numerous residual blocks. For more elaborate de-
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Algorithm 1 Structured Sparsity Learning (SSL)
Input: Pretrained VSR network with parameters θ, regularization increment ∆, increment interval T1, penalty ceiling limit
τ , regularization iterations T2, finetuning iterations T3.
Output: Pruned model with parameters θ′.

1: Pruning:
2: Init: Insert Scaling factors γ in the network as described in the paper Sec. 3.2 (1) and set values to 1.
3: Init: set αγ to 0.
4: Obtain the unimportant filters or channels set S, and corresponding scaling factors set Ssf according to L1-norm pruning

criterion as described in the paper Sec. 3.2 (2).
5: while not all αγ reach τ , γ ∈ Ssf do
6: if i%T1 == 0 then
7: αγ = min (αγ +∆, τ) for γ ∈ Ssf

8: end if
9: Calculate LSIR (paper Eq. 1).

10: Calculate the reconstruction loss (paper Eq. 7).
11: Loss (Lrec + LSIR) backward and parameters update by Adam optimizer [4].
12: end while
13: for i = 1 to T2 do
14: Calculate LSIR (paper Eq. 1).
15: Calculate the reconstruction loss (paper Eq. 7).
16: Loss (Lrec + LSIR) backward and parameters update by Adam optimizer.
17: end for
18: Remove the unimportant filters or channels in S. Note that the pruning schemes for residual blocks and pixel-shuffle are

described in paper Sec. 3.2 (3) and (4), respectively.
19: Remove all scaling factors (scales merged with filter weights). Rebuild to obtain the pruned model.
20: Finetuning:
21: for i = 1 to T3 do
22: Calculate the temporal finetuning loss (paper Eq. 6).
23: Calculate the reconstruction loss (paper Eq. 7).
24: Calculate the total loss (paper Eq. 8).
25: The total loss backward and parameters update by Adam optimzer.
26: end for
27: Output the final model with parameters θ′.

signed module, such as the dense connection [3] and de-
formable convolution [2], we have not investigated yet.
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(a) backward trunk.main.2.15.conv1 (b) backward trunk.main.2.15.conv2
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Figure 1. Illustration of the SSL pruning process of six convolution layers in the BasicVSR [1]. (a) and (b) are two convolutions in the
15-th residual block of the forward network. (c) and (d) are two convolutions in the 15-th residual block of the backward network. (e) and
(f) are two convolutions before pixel-shuffle operation of the upsampling network.



0 20 40 60 80 100
Frame index

101

105

109

1013

1017

1021

1025

Av
er

ag
e 

va
lu

e 
of

 th
e 

hi
dd

en
 s

ta
te  backward propagation

forward propagation

0 20 40 60 80 100
Frame index

101

105

109

1013

1017

1021

1025

Av
er

ag
e 

va
lu

e 
of

 th
e 

hi
dd

en
 s

ta
te  backward propagation

forward propagation

(a) REDS4: 000 (b) REDS4: 011

Figure 2. The average value of the hidden state after pruning without finetuning. We apply SSL on BasicVSR at 0.5 pruning ratio, and test
on 000 and 011 clips of REDS4 [6].
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Figure 3. Qualitative comparison between different VSR and pruning methods on REDS4 [6], Vid4 [5], and Vimeo90K-T [7] benchmarks.
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