
Supplementary Materials for “VecFontSDF: Learning to Reconstruct and
Synthesize High-quality Vector Fonts via Signed Distance Functions”

Zeqing Xia*, Bojun Xiong*, Zhouhui Lian†

Wangxuan Institute of Computer Technology, Peking University, China

1. Details of Post-processing Steps
1.1. From Parabolic Curves to a Shape Primitive

The raw input of VecFontSDF consists of the parameters
of parabolic curves. As mentioned in the main manuscript,
each parabolic curve is defined by:

k(px+ qy)2 + dx+ ey + f = 0, (1)

and the inside area of the parabolic curve is defined as:

H(x, y) = k(px+ qy)2 + dx+ ey + f < 0. (2)

To reconstruct the geometry of an input glyph image, we
first need to compute the intersection of Na areas to get
a shape primitive. To realize this, we start from a initial
square canvas from the left-bottom point (-1,-1) to the right-
top point (1,1). The four sides of this initial square canvas
can be treated as four special quadratic Bézier curves which
degenerate into straight lines.

As shown in Fig 1, when adding a new parabolic curve
(one of the Na parabolic curves), we need to calculate the
intersection of the inside area of the newly-added parabolic
curve and current canvas. The current canvas (the red area)
is enclosed by several quadratic Bézier curves and the in-
side area of newly-added parabolic curve (the blue area) is
depicted by Eq. 2. Therefore, the key problem to be re-
solved here is how to calculate the intersection points of a
quadratic Bézier curve and a parabolic curve. Recall that,
a standard representation for the quadratic Bézier curve can
be described as:

P (t) = (1− t)2P0 + 2t(1− t)P1 + t2P2

0 ≤ t ≤ 1.
(3)

We simply substitute the x and y in Eq. 1 with the coor-
dinates of the points in Eq. 3 to get a new quartic equa-
tion of t. After solving this quartic equation and validating
0 ≤ t ≤ 1, we can obtain all the intersection points (the
yellow points in Fig 1).

1Denotes equal contribution.
2Corresponding author. E-mail: lianzhouhui@pku.edu.cn

①

②

③
④

⑤

⑥

Figure 1. A detailed illustration of how to calculate the intersection
of the current canvas and a newly-added parabolic curve.

Then, we need to update the current canvas (the red
area) to the newly-calculated intersection region (the purple
area). The newly-calculated intersection points (four yel-
low points) divide the current canvas into six segments as
marked in Fig. 1. Due to the divisibility of Bézier curves, a
given Bézier curve

B : P (t) =

n∑
i=0

[
Ci

nt
i(1− t)n−iPi

]
(4)

can be divided by any point t̂ on the curve into two parts and
every part is still a Bézier curve with the same order as the
original one. For example, the left part Bl can be defined

1



Figure 2. A typical corner case: a newly-added parabolic curve
(the red curve on the left) splits the existing canvas into multiple
parts (right). Blue arrows denote the directions of the inside areas
from Eq. 2.

as:

Bl : Pl(t) =

n∑
i=0

[
Ci

nt
i(1− t)n−iP̂i

]
P̂i =

i∑
j=0

[
Cj

i t̂
j(1− t̂)i−jPj

]
,

(5)

and so is the right part. Therefore, these six segments are
also quadratic Bézier curves.

To accurately obtain this intersection region (the purple
area), we start from one of these intersection points (four
yellow points), for example, the right-bottom yellow point.
Then, we traverse anticlockwise through all the segments
one by one (as pointed out by the yellow arrows in Fig. 1)
and judge whether every segment is inside the parabolic
curve (the blue area). Due to the convexity of quadratic
Bézier curves, we only need to calculate if its middle point
(t = 0.5) (the blue point) is inside this area. For the case
shown in Fig. 1, the first three segments are not inside the
blue area, so we simply ignore them and go to the right-
top yellow point. The fourth segment (the red segment on
the top) is exactly inside the blue area, so we reserve this
segment and calculate the quadratic Bézier curve (a part of
the parabolic curve that is marked as the green segment on
the right) whose two on-curve control points are the cur-
rent yellow point (right-top) and the previous yellow point
(right-bottom).

Since the intersection point of the tangents of two on-
curve control points of a quadratic Bézier curve is exactly
the off-curve control point, we can calculate the equations
of these two tangents (the purple dashed lines on the right
in Fig. 1) to get the coordinate of the off-curve control point
(the red point on the right). Based on Eq. 1, the slope y′ of
tangent on any point (x0, y0) can be calculated as:

2k (px0 + qy0) (p+ qy′) + d+ ey′ = 0, (6)

which equals to

(2k(px0 + qy0)q + e)y′ = −(2k(px0 + qy0)p+ d). (7)

On-curve Points

Off-curve Points

Parabolic Curve

Inside Area

Parabolic Curve

Inside Area

Vector Glyph

 Primitives

Figure 3. The pipeline of our post processing step (also shown as
Fig. 4 in the main manuscript).

Therefore, the equation of the tangent on (x0, y0) is:

y − y0 = y′(x− x0), (8)

where y′ can be solved from Eq. 7.
After getting the two equations of tangents on two on-

curve control points, we can use them to calculate the co-
ordinate of the off-curve control point (the red point on the
right). As shown in Fig. 1, we repeat the above process
on the fifth and sixth segments where the sixth segment is
inside the blue area to get another quadratic Bézier curve
(the green segment on the left). Finally, we use these four
quadratic Bézier curves (two red segments and two newly-
calculated green segments) to update the current canvas.

We implement the above-mentioned process recursively,
and eventually get the primitive as shown in Fig. 3.

It is notable that Fig. 2 shows a typical corner case,
where a newly-added parabolic curve (the red curve in
Fig. 2) splits the existing canvas (the gray area on the left)
into several parts (the green and red areas on the right). Un-
der this circumstance, we need to check whether the middle
point of every segment from newly-added parabolic curve
is out of the existing canvas. If so, we separate the existing
canvas into the corresponding parts, and handle each part
individually.

1.2. Calculating Intersection Points of Two
Quadratic Bézier Curves

As shown in Fig. 3, after obtaining all the primitives, we
can get the filled shape of the target vector glyph by simply
assembling them together with many intersections inside
the contour. However, further simplifying the primitives’
outlines is necessary to obtain a complete outline represen-
tation of the vector glyph. Before we introduce the details
of how to merge all the outlines of primitives, we need to
clarify the process of calculating the intersection points of
two quadratic Bézier curves which plays an important role
in the following section.

To calculate all the possible intersection points of two



quadratic Bézier curves described by Eq. 3, we have

∃ t1, t2 ∈ [0, 1]

s.t. x1 (t1) = x2 (t2)

y1 (t1) = y2 (t2) .

(9)

The left hand side of Eq. 9 equals to:

(1− t1)
2x1,0 + 2t1(1− t1)x1,1 + t21x1,2 = x2 (t2)

(1− t1)
2y1,0 + 2t1(1− t1)y1,1 + t21y1,2 = y2 (t2) .

(10)

We expand the above equation and let:

A = x1,0 − 2x1,1 + x1,2

B = −2x1,0 + 2x1,1

C = x1,0

D = y1,0 − 2y1,1 + y12

E = −2y1,0 + 2y1,1

F = y1,0.

(11)

Thus, we can rewrite the Eq. 10 into:

At21 +Bt1 + C = x2 (t2) (12)

Dt21 + Et1 + F = y2 (t2) . (13)

Let (12)×D− (13) ×A, we get

(DB −AE)t1 + (DC −AF )

=Dx2 (t2)−Ay2 (t2) .
(14)

The left hand side of Eq.14 is a linear expression of t1,
and the right hand side is a quadratic expression of t2.

Assume DB − AE ̸= 0, we can represent t1 by a
quadratic function of t2:

t1 =
Dx2 (t2)−Ay2 (t2)−DC +AF

DB −AE
. (15)

Then, we substitute t1 in Eq. 10 with Eq. 15 and thus we
can get a quartic equation of t2. Afterwards, we solve this
equation to get t2 and use Eq. 15 to get t1.

Otherwise, if DB − AE = 0, we directly solve the
quadratic equation of t2 from Eq. 14 and use this already
known t2 to solve one of the equations in Eq. 10 to get t1.

After calculating t1 and t2 and validating if both of them
satisfy the constraint 0 ≤ t ≤ 1, we can finally use Eq.
3 to calculate the intersection points of these two quadratic
Bézier curves.

1.3. Outline Simplification

As shown in Fig. 4, to merge the outlines of all primi-
tives, we first need to calculate the intersection points (yel-
low points in Fig. 4) of all existing quadratic Bézier curves

Figure 4. An illustration of our outline simplification step. Yellow
points denote the intersection points of all quadratic Bézier curves.
The red outline and blue outline compose this glyph’s contour.
Black segments are all other quadratic Bézier curves whose middle
points’ SDF values are less than 0 (i.e., inside the glyph contour).

using the method described in Sec. 1.2. After calculating all
the intersection points, every quadratic Bézier curve is fur-
ther divided into shorter segments. Due to the divisibility
of Bézier curves, these shorter segments are also quadratic
Bézier curves.

For all the existing quadratic Bézier curves after divi-
sion, we can directly ignore the ones inside the glyph con-
tour (e.g., the black segments in Fig. 4) and reserve the
ones composing the glyph contour (all the quadratic Bézier
curves lying on the red and blue contours). Recall that in
the main manuscript we have already get the pseudo dis-
tance functions G(x, y) to calculate the value of the pseudo
distance on each sampling point (x, y), which is an effec-
tive tool to help us determine the position of every segment.
Due to the convexity of quadratic Bézier curves, whether a
quadratic Bézier curve is contained in the glyph contour or
not can be judged by the signed distance of its middle point
(t = 0.5) G(xm, ym), where (xm, ym) denotes the coordi-
nates of the middle point.

For a given quadratic Bézier curve, if G(xm, ym) = 0
which means it composes the glyph contour, we reverse this
curve and discard the curves whose G(xm, ym) < 0 (the
black segments). Finally, we obtain all the quadratic Bézier
curves lying on the glyph contour (the red and blue con-
tours) to finish our outline simplification step.

2. More Results
In this section, we provide additional experimental re-

sults in support of the conclusions drawn in the main
manuscript.

2.1. Vector Font Reconstruction

Fig. 5 shows more vector font reconstruction results ob-
tained by our method as well as the corresponding glyph
contours after implementing the simplification step men-
tioned in Sec. 1.3, from which we can see that our method



Input Image

Rec SVG

Rec Contour

Input Image

Rec SVG

Rec Contour

Input Image

Rec SVG

Rec Contour

Input Image

Rec SVG

Rec Contour

Input Image

Rec SVG

Rec Contour

Input Image

Rec SVG

Rec Contour

Input Image

Rec SVG

Rec Contour

Input Image

Rec SVG

Rec Contour

Figure 5. More vector font reconstruction results obtained by our method. “Rec SVG” denotes the filled shape of the reconstructed vector
glyphs and “Rec Contour” denotes the contours of corresponding vector glyphs.

is capable of reconstructing various styles of fonts given the
input raster images, including some complex glyphs with
serifs.

2.2. Vector Font Interpolation

Fig. 6 shows more results on vector font interpolation by
only inputting raster glyph images (denoted as the columns
‘g1’, ‘g2’ and ‘g3’ in Fig. 6). Our method achieves smooth
interpolation between different styles of fonts demonstrat-
ing that the latent space embedded by our CNN encoder is
perceptually smooth and interpretable to represent the vec-
tor font style.

2.3. Few-shot Style Transfer

Fig. 7 shows more few-shot style transfer results gen-
erated by our method. As shown in Fig. 7, we demon-
strate the effectiveness of our method in the task of gener-
ating all other vector glyphs by only giving a few reference
glyph images instead of vector glyphs. The input reference
glyphs are marked by red rectangles in Fig. 7, from which
we can see that our model is capable of synthesizing the
whole vector font given just a small number of reference
glyph images. Especially for the second and third fonts,
almost all glyphs in the synthesized vector font are approx-



𝑔𝑔1 𝑔𝑔2𝜆𝜆 = 0.1 𝜆𝜆 = 1𝜆𝜆 = 0.2 𝜆𝜆 = 0.3 𝜆𝜆 = 0.4 𝜆𝜆 = 0.5 𝜆𝜆 = 0.6 𝜆𝜆 = 0.7 𝜆𝜆 = 0.8 𝜆𝜆 = 0.9𝜆𝜆 = 0 𝑔𝑔3𝜆𝜆 = 0.1 𝜆𝜆 = 1𝜆𝜆 = 0.2 𝜆𝜆 = 0.3 𝜆𝜆 = 0.4 𝜆𝜆 = 0.5 𝜆𝜆 = 0.6 𝜆𝜆 = 0.7 𝜆𝜆 = 0.8 𝜆𝜆 = 0.9𝜆𝜆 = 0

Figure 6. Our method is capable of generating vector fonts in new styles by only providing raster glyph images (the columns ‘g1’, ‘g2’ and
‘g3’) in different font styles. Two interpolation processes (‘g1’ to ‘g2’ and ‘g2’ to ‘g3’) are presented in succession.

imately identical to the human-designed vector glyphs. For
some complex and complicated fonts with serifs (such as
the first and fourth fonts in Fig. 7), we observe that some
local details of our synthesis results are only slightly dif-
ferent against the ground-truth glyphs. Considering that our
model only receives the glyph images of ‘A’, ‘B’, ‘a’ and ‘b’
as reference inputs, our synthesized glyphs of other charac-
ters have already sufficiently embodied the style feature of
these input samples. Most importantly, all the vector glyphs
generated by our method are of high quality and look vi-
sually pleasing, which markedly outperform other existing
state-of-the-art methods without further refinement.



Ground Truth

VecFontSDF

Ground Truth

VecFontSDF

Ground Truth

VecFontSDF

Ground Truth

VecFontSDF

Figure 7. More few-shot vector font generation results of our VecFontSDF. The inputs to our networks are only the rendering results (raster
images) of corresponding vector glyphs marked by red rectangles.


	. Details of Post-processing Steps
	. From Parabolic Curves to a Shape Primitive
	. Calculating Intersection Points of Two Quadratic Bézier Curves
	. Outline Simplification

	. More Results
	. Vector Font Reconstruction
	. Vector Font Interpolation
	. Few-shot Style Transfer


