
Neural Lens Modeling
Supplementary Material

Wenqi Xian1,∗, Aljaž Bočiž2, Noah Snavely3 and Christoph Lassner4

Meta Reality Labs Research1,2,4

Cornell University1,3

wx97@cornell.edu1, aljaz@meta.com2, snavely@cs.cornell.edu3, classner@meta.com4

A. Overview

This supplementary document provides implementation
and training details in Section B and additional evaluation
results on the SynLens dataset in Section C.

B. Implementation and Training Details

FC layer width

FC layer depth 128 256 512 1024 2048

4 10.82 9.12 1.18 0.07 0.07
10 9.43 9.18 0.92 0.09 0.10
15 9.21 9.23 0.45 0.12 0.13

Table 1. Reprojection error (RMS) on SynLens with different
model size.

Optimize NeuroLens. We performed a hyperparameter
search on the depth and width of the lens model and present
the results in Tab. 1. We found that fully connected layers
with a width of 1024 and depth of 4; we had instead consis-
tently used a depth of 4 for all experiments which produces
the best results. Specifically, we built an invertible ResNet
with two residual blocks, each with two levels of internal
layers. In all experiments on the SynLens dataset, we set the
learning rate to 1e-4 and the maximum number of epochs
to 50 (each epoch iterates through all frames in the captured
sequence). The average runtime of the optimization process
is 5 minutes on one NVIDIA V100 GPU machine. We ac-
tivate the photometric loss at the 15th epoch and and fix the
weight ratio between the geometric and photometric loss to
10:1.

Optimizing the Keypoint Marker Design and Detection.
We initiate the marker itself as a 21 × 21 × 3 image with
random uniform initialization that is being processed by a

Sigmoid function to remain within range during optimiza-
tion. The detector model is a MobileNet-v3 [1] followed by
two fully-connected layers 1000× 386, ReLU and 386× 3.
The MobileNet-v3 is initialized as pretrained from the Py-
Torch model zoo. The first two of the three outputs repre-
sent a [0;1] normalized mean for the Gaussian distribution
of the marker center, the third one represent the standard de-
viation. We optimize the negative log-likelihood of the data
under the predicted distributions; the predicted standard de-
viation can be used for filtering points for which the model
is too uncertain, for all experiments in the paper we use an
empirically selected threshold of 0.2.

We use three learning rates for the optimization:
0.00005677 for the MobileNet-v3 backend, 0.4034 for the
fully connected layers, and 67.18 for the marker values
themselves. We use a batch size of 50 randomly sam-
pled transformations applied to the marker. To train a
marker/detector for general purpose RGB camera calibra-
tion we use the transformations of:

1. motion blur with probability 0.2 and blur kernel size 3;

2. affine transformation with rotation up to 180 deg. (pos.
and neg.), translation of up to 5% (pos. and neg.), scale
of up to 5% (up and down), shearing of up to 2 deg. (in
both directions);

3. sensor noise in the form of random Gaussian noise
with mean 0.0 and std 0.1

implemented using the Kornia [4] library. The transforma-
tions can be adapted to the capture scenario and sensor at
hand. The hyperparameters for the optimization have been
optimized using Ray Tune [3] and the async hyperband
scheduler [2]. The marker print size, resolution and density
has to be sensibly chosen depending on the printed board
size, camera focal length and intended recording distance.

1



Figure 1. Reprojection error (RMS) on the SynLens dataset by
baseline method and our method with noisy keypoints.

Figure 2. Reprojection error (RMS) histogram on the SynLens
dataset by baseline method and our method with ground-truth key-
points.

C. Additional Evaluations on the SynLens
Dataset

In Fig. 1, we show how different levels of artificially
added noise in keypoints affects the calibration performance
of the different methods. We added Gaussian noise with
zero mean to the center location of each uniformly sam-
pled keypoint, and the standard deviation of the added noise
varies from 1% to 15% of the average distance between
each keypoint. The error of both methods increases with
the level of added noise. However, our method has a slower
increase in reprojection error, meaning it is more robust to
noisy keypoints. In Fig. 2, we show a detailed comparison
with Schöps et al. [5] on the result distribution of the Syn-
Lens dataset.

References
[1] Andrew Howard, Mark Sandler, Bo Chen, Weijun Wang,

Liang-Chieh Chen, Mingxing Tan, Grace Chu, Vijay Vasude-
van, Yukun Zhu, Ruoming Pang, Hartwig Adam, and Quoc
Le. Searching for mobilenetv3. In 2019 IEEE/CVF Interna-

tional Conference on Computer Vision (ICCV), pages 1314–
1324, 2019. 1

[2] Liam Li, Kevin Jamieson, Afshin Rostamizadeh, Ekaterina
Gonina, Jonathan Ben-tzur, Moritz Hardt, Benjamin Recht,
and Ameet Talwalkar. A system for massively parallel hy-
perparameter tuning. In I. Dhillon, D. Papailiopoulos, and V.
Sze, editors, Proceedings of Machine Learning and Systems,
volume 2, pages 230–246, 2020. 1

[3] Richard Liaw, Eric Liang, Robert Nishihara, Philipp Moritz,
Joseph E Gonzalez, and Ion Stoica. Tune: A research platform
for distributed model selection and training. arXiv preprint
arXiv:1807.05118, 2018. 1

[4] E. Riba, D. Mishkin, D. Ponsa, E. Rublee, and G. Bradski.
Kornia: an open source differentiable computer vision library
for pytorch. In Winter Conference on Applications of Com-
puter Vision, 2020. 1

[5] Thomas Schöps, Viktor Larsson, Marc Pollefeys, and Torsten
Sattler. Why having 10,000 parameters in your camera model
is better than twelve. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
2535–2544, 2020. 2

2


