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We provide more experiment details of domain adaptation and domain generalization in Section A and Section B, respec-
tively, supervised learning on adverse conditions in Section C and additional details on SemanticSTF dataset in Section D.

A. Domain generalization
A.1. Implementation details

We provide the detailed training configurations for semantic segmentation of LiDAR point clouds that have been adopted
as described in Sec. 5.1 of the submitted paper. Specifically, we implement the backbone model MinkowskiNet [2] with
the TorchSparse library [11]. For training, we use SGD optimizer. The learning rate, momentum and weight decays are set
as 0.24, 0.9, and 1.4e − 4, respectively. τ in Eq. 1 in the paper is set as 0.07 [4, 15] and λct in Eq. 2 is set as 0.1. The
momentum coefficient m is set at 0.99. We train 50 epochs with one NVIDIA 2080Ti with 11GB GPU memory and set the
batch size at 4. The augmentations of training data in the source-domain are implemented as follows: For rotation, LiDAR
points are rotated with the range of [0, 360◦] along Z axis. For scale, the coordinates of LiDAR points are randomly scaled
within [0.95, 1.05]. For drop-out, we randomly drop-out 0-20% points of input LiDAR scans with a probability of 0.5. As
for noise perturbation, 0− 2, 000 random points are added into the 3D space of each LiDAR scan with a probability of 0.5.
When using flipping, we randomly flip coordinates of LiDAR point clouds along x or y axis with a probability of 0.5. As for
jittering, random coordinate shifts with a range of [−0.05, 0.05] meters are added into LiDAR points with a probability of
0.5.

In training the oracle model, we employ the SGD optimizer with the hyperparameters including initial learning rate at
0.1, momentum at 0.9, weight decay at 1.0e − 4, and dampening at 0.1. We train the segmentation model with 500 epochs
using a single NVIDIA 2080Ti with 11GB GPU memory. The batch size is set as 4. We use Poly learning rate policy with
power= 0.9. As for data augmentations, we follow [12] and adoptes random rotation ([−π, π]) and scaling ([0.95, 1.05]); We
also adopts PolarMix [16] with following parameter settings: Rotation angles along the Z-axis, denoted as Ω, are randomly
scaled within normal distributions with a mean of µ = 0 and standard deviation of σ = 2

3π. We keep the original instance
classes for rotate-pasting in PolarMix.

A.2. Evaluation of individual adverse weather conditions

We noticed that for certain individual adverse weather conditions, some class has no data captured in the validation set
of SemanticSTF. Specifically, there are no points of bicycle and motorcycle in the validation set of dense fog; no points of
bicyclist and motorcyclist in the validation set of snow, and no bicycle and motorcyclist in the validation set of rain. This
is reasonable as the LiDAR data of SemanticSTF is collected in European countries including Germany, Sweden, Denmark,
and Finland where motorcycles are not widely used for the reason of environmental protection. In addition, people usually
do not ride bicycles or motorcycles in adverse weather conditions. As a result, classes motor, motorcyclist, and bicyclist
have extremely lower occurrence frequency, leading to an absence of these classes in the validation set of SemanticSTF
under relevant weather conditions. Tables 1, 2, 3, and 4 present corresponding class-level IoU performance for each adverse
weather in Table 3 of the submitted paper.
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SemanticKITTI→SemanticSTF(dense fog)

Baseline 74.7 - - 7.8 0.0 6.4 8.9 0.0 72.2 0.6 33.8 0.0 59.6 48.7 56.9 27.4 56.4 27.2 21.1
Dropout [10] 67.5 - - 1.9 0.0 8.9 2.8 0.0 70.9 5.6 29.0 0.8 64.6 44.0 60.0 31.6 60.6 28.1 21.3
Perturbation 68.6 - - 8.8 0.0 6.0 0.0 0.0 66.6 14.8 24.3 0.1 52.2 43.5 60.1 19.4 54.1 16.3 11.5
PolarMix [16] 52.3 - - 17.2 0.0 3.6 0.0 19.3 75.2 0.0 28.7 0.6 62.4 49.5 60.5 29.0 55.4 20.8 30.7
MMD [6] 75.5 - - 0.3 0.0 4.2 0.0 0.0 75.4 11.2 33.6 0.5 64.8 51.7 64.7 26.1 62.3 23.0 23.0
PCL [18] 64.3 - - 11.7 0.0 0.6 0.0 0.0 72.4 3.8 31.3 0.8 63.1 46.5 65.7 19.4 64.3 18.5 28.9
PointDR (Ours) 69.2 - - 7.1 0.0 2.4 6.7 0.0 73.5 8.5 33.6 0.2 65.6 47.6 63.6 31.0 60.7 24.4 38.8

SynLiDAR→SemanticSTF(dense fog)

Baseline 21.6 - - 6.4 0.0 3.7 2.9 18.9 25.7 0.0 7.7 1.0 41.2 22.5 52.3 15.4 55.5 9.3 2.4
Dropout [10] 12.7 - - 7.7 0.0 1.9 0.4 2.5 38.3 0.1 10.2 0.3 37.3 21.8 57.4 13.1 44.5 10.1 1.0
Perturbation 13.3 - - 10.4 0.0 4.3 2.8 19.1 30.0 0.7 8.8 1.2 30.5 17.5 48.9 18.4 50.3 16.3 5.2
PolarMix [16] 15.8 - - 10.6 0.0 1.5 1.7 3.5 27.7 0.0 9.9 0.3 46.2 28.9 59.2 13.5 49.5 4.4 1.7
MMD [6] 26.5 - - 12.7 0.0 2.7 4.0 22.3 30.6 0.0 9.4 0.0 31.6 21.7 52.6 13.9 54.3 8.9 2.5
PCL [18] 22.9 - - 20.1 0.0 2.2 6.2 28.3 29.0 0.0 9.2 2.6 37.9 22.9 54.5 11.4 45.9 8.5 1.1
PointDR (Ours) 42.5 - - 16.6 0.0 2.4 3.2 12.2 31.9 0.2 9.0 0.8 42.8 27.1 59.8 18.3 44.0 15.4 5.7

Table 1. Class-wise IoU on domain generalization with SemanticKITTI or SynLiDAR as the source and validation set of dense fog in
SemanticSTF as the target. ’-’ represents no samples captured in dense fog in the validation set of SemanticSTF.
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SemanticKITTI→SemanticSTF(light fog)

Baseline 60.0 0.0 0.0 1.3 10.9 12.3 0.0 0.0 68.6 4.5 36.0 0.0 61.5 53.1 55.6 38.0 44.7 29.2 18.2
Dropout [10] 63.2 0.0 0.0 3.2 10.2 5.5 0.0 0.0 63.8 4.9 29.4 0.1 62.5 53.1 58.6 42.5 46.6 27.8 14.3
Perturbation 76.6 0.0 0.0 38.2 0.0 21.9 0.0 0.0 66.6 8.8 34.6 0.1 62.4 56.1 63.2 25.3 46.2 22.4 6.5
PolarMix [16] 42.6 0.2 0.0 29.4 3.3 17.0 0.0 0.2 69.8 0.7 33.1 0.1 56.2 56.3 54.9 24.7 44.8 24.1 16.6
MMD [6] 63.6 0.0 0.0 0.1 13.3 25.9 0.0 0.0 73.9 5.6 42.8 0.1 64.1 55.3 61.9 36.6 50.7 29.2 9.9
PCL [18] 66.3 0.0 0.0 26.7 0.2 8.7 0.0 0.0 67.8 5.0 36.7 0.4 64.3 58.0 66.1 21.2 53.1 25.5 24.6
PointDR (Ours) 65.9 0.0 0.0 29.7 4.4 11.4 0.9 0.0 70.9 8.8 43.3 0.0 66.5 55.1 61.3 43.0 49.1 29.1 24.3

SynLiDAR→SemanticSTF(light fog)

Baseline 32.0 4.2 0.5 27.3 0.2 14.0 6.2 0.0 31.0 0.0 12.6 0.9 38.7 24.8 51.5 26.7 46.4 8.5 1.3
Dropout [10] 22.5 3.0 0.9 16.0 0.1 10.0 5.2 0.2 40.3 1.3 18.1 0.0 38.9 22.1 57.6 23.5 38.5 13.8 3.7
Perturbation 31.1 1.9 1.6 21.5 0.0 12.5 2.6 0.0 33.2 1.6 14.3 1.1 34.3 20.1 48.7 29.8 42.0 16.7 4.5
PolarMix [16] 27.3 0.3 0.4 8.9 1.4 8.2 1.2 0.0 29.0 0.2 15.5 0.7 39.9 27.4 57.3 28.8 40.9 5.8 1.5
MMD [6] 31.0 2.1 0.5 16.0 0.0 10.5 1.7 0.0 37.7 0.3 16.3 0.6 29.2 24.9 51.8 29.6 47.8 8.3 1.8
PCL [18] 31.7 0.7 0.8 10.1 0.1 10.2 21.6 0.0 33.9 0.6 16.1 0.1 37.8 22.2 52.5 23.8 42.6 11.3 2.2
PointDR (Ours) 44.7 1.7 1.0 33.9 0.3 12.9 4.7 0.0 36.0 0.9 15.8 0.7 44.4 30.3 60.0 28.3 42.4 15.1 5.7

Table 2. Class-wise IoU on domain generalization with SemanticKITTI or SynLiDAR as the source and validation set of light fog in
SemanticSTF as the target.
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SemanticKITTI→SemanticSTF(rain)

Baseline 72.4 0.0 - 0.0 16.3 6.9 0.0 - 71.6 12.7 58.1 0.0 70.0 33.0 51.8 9.9 24.2 33.3 22.9
Dropout [10] 81.3 0.0 - 0.0 21.2 5.6 0.0 - 62.2 11.8 44.8 0.6 76.8 44.7 56.0 16.3 23.3 32.8 22.2
Perturbation 83.9 0.0 - 2.4 0.0 20.9 0.0 - 73.2 12.6 54.7 7.0 71.7 43.2 58.3 5.9 29.4 29.4 16.9
PolarMix [16] 56.7 4.0 - 9.1 1.5 29.8 0.0 - 68.2 10.9 50.2 0.5 73.2 47.2 48.3 17.8 22.3 32.3 14.1
MMD [6] 83.9 0.0 - 0.0 8.9 31.6 0.0 - 77.9 17.9 60.2 0.3 69.6 39.3 58.4 14.1 32.5 34.0 30.0
PCL [18] 84.2 0.0 - 0.0 0.1 4.3 0.0 - 68.1 10.9 55.5 4.6 74.7 43.9 59.6 5.8 27.3 34.2 38.8
PointDR (Ours) 78.0 0.0 - 0.0 13.8 20.0 0.0 - 72.1 14.7 60.0 1.2 76.1 36.9 58.0 18.3 24.7 36.1 32.5

SynLiDAR→SemanticSTF(rain)

Baseline 45.8 4.5 - 6.8 0.4 38.9 0.0 - 32.0 0.0 24.3 0.0 43.0 8.0 33.8 11.3 23.9 11.5 7.7
Dropout [10] 47.0 7.6 - 7.7 0.0 34.0 0.0 - 47.3 6.9 34.6 0.0 39.8 11.5 37.5 13.8 29.6 21.6 8.6
Perturbation 57.5 5.3 - 18.2 0.0 36.3 0.1 - 37.1 1.5 26.9 0.3 34.9 10.4 32.6 12.2 20.5 23.2 10.4
PolarMix [16] 59.6 1.5 - 6.0 5.2 24.6 1.0 - 31.4 0.1 30.4 0.0 55.5 12.2 44.6 13.1 25.0 11.0 4.7
MMD [6] 49.5 4.8 - 20.0 4.7 37.6 0.0 - 43.7 0.0 32.4 0.0 42.1 11.3 34.4 12.3 25.1 13.4 8.1
PCL [18] 51.3 0.9 - 4.3 2.1 35.6 0.0 - 41.4 0.0 32.0 0.0 54.8 9.7 37.1 11.4 24.2 16.6 6.3
PointDR (Ours) 42.2 3.3 - 21.9 0.0 30.4 1.7 - 35.8 3.2 31.9 0.0 54.0 14.4 40.7 12.5 31.9 23.6 11.8

Table 3. Class-wise IoU on domain generalization with SemanticKITTI or SynLiDAR as the source and validation set of rain in Seman-
ticSTF as the target. ’-’ represents no samples captured in rain in the validation set of SemanticSTF.



Methods ca
r

bi
.c

le

m
t.c

le

tr
uc

k

ot
h-

v.

pe
rs

.

bi
.c

ls
t

m
t.c

ls
t

ro
ad

pa
rk

i.

si
de

w
.

ot
h-

g.

bu
ild

.

fe
nc

e

ve
ge

t.

tr
un

k

te
rr

a.

po
le

tr
af

.

SemanticKITTI→SemanticSTF(snow)

Baseline 49.5 0.0 0.3 0.5 11.6 10.8 - - 42.1 14.9 23.9 0.0 71.5 26.7 29.3 24.0 17.8 30.8 10.1
Dropout [10] 58.5 0.0 30.5 5.4 13.2 5.2 - - 41.9 18.0 20.4 2.5 76.4 30.5 31.8 32.7 19.8 28.2 7.0
Perturbation 73.6 0.0 0.0 5.5 1.1 19.8 - - 45.7 10.9 34.4 0.1 80.6 32.8 45.2 12.8 20.0 24.4 9.5
PolarMix [16] 66.5 3.4 9.3 3.5 5.8 32.4 - - 55.3 3.6 30.1 0.1 77.8 36.1 34.2 12.6 25.1 29.8 10.1
MMD [6] 59.4 0.0 4.7 0.0 14.7 30.5 - - 50.8 16.9 32.8 0.2 68.4 24.4 36.6 24.1 24.1 30.0 11.4
PCL [18] 64.0 0.0 0.0 8.2 0.7 9.2 - - 38.9 15.2 31.6 2.3 79.6 35.1 41.3 11.2 23.1 30.1 26.8
PointDR (Ours) 66.2 0.0 10.4 0.0 16.7 21.3 - - 43.0 15.2 33.0 1.7 76.8 30.3 36.1 27.6 22.2 30.0 14.1

SynLiDAR→SemanticSTF(snow)

Baseline 24.6 2.7 1.5 2.4 0.0 32.2 - - 12.9 0.4 18.3 0.0 33.3 13.8 15.7 14.9 18.1 10.1 1.9
Dropout [10] 35.9 2.8 3.7 3.0 0.0 21.9 - - 20.9 10.0 22.8 0.0 33.2 14.8 17.1 16.8 16.5 15.7 2.6
Perturbation 27.1 2.4 6.8 6.8 0.2 31.0 - - 15.4 4.8 19.7 0.0 26.3 12.4 14.0 22.0 16.4 19.0 4.1
PolarMix [16] 53.4 2.3 4.1 6.0 1.2 27.9 - - 11.7 1.9 21.5 0.3 45.2 20.8 21.7 18.8 16.5 10.5 1.7
MMD [6] 20.8 2.7 6.0 4.8 0.2 31.3 - - 20.1 0.5 21.0 0.1 29.6 12.2 15.0 16.6 21.8 11.3 2.4
PCL [18] 30.7 1.1 4.4 6.2 0.3 34.6 - - 19.1 1.7 22.0 0.3 37.8 12.6 16.4 14.2 19.9 14.7 3.0
PointDR (Ours) 34.2 4.0 7.4 7.5 0.1 36.2 - - 13.8 12.0 22.7 0.0 48.8 19.9 19.9 18.9 17.0 20.7 3.4

Table 4. Class-wise IoU on domain generalization with SemanticKITTI or SynLiDAR as the source and validation set of snow in Seman-
ticSTF as the target. ’-’ represents no samples captured in snow in the validation set of SemanticSTF.

A.3. Ablation study

Data augmentation. We study how data augmentation techniques affect generalized semantic segmentation of point clouds
(3DSS) and compare them with the proposed PointDR. As Table 5 shows, we report seven models over the benchmark
“SemanticKITTI→SemanticSTF”: 1) The Baseline is a source-only model that is trained by using the training data of Se-
manticKITTI; 2) The drop-out, noise perturbation, flipping, and jittering are segmentation models with different augmen-
tation techniques over input data; All is the model that combines of all these augmentation techniques; 3) Our proposed
PointDR. We can see that implementing each of these augmentation techniques improves the generalization capability of
the segmentation model clearly and consistently. However, the combination of them all did not yield the best segmentation
performance, largely because the combination brings too many distortions to the input point clouds. On the contrary, the pro-
posed PointDR achieves the best segmentation performance, indicating its superior ability to learn universal representations
for all-weather 3DSS.

Method Baseline drop-out perturbation flipping jittering All PointDR

mIoU 24.4 25.7 25.9 25.2 26.9 26.1 28.6

Table 5. Comparison of data augmentation techniques and the proposed PointDR. PointDR performs clearly the best over domain general-
ized segmentation task SemanticKITTI→SemanticSTF.

Parameter analysis. We examine the parameter λcl in Eq. 2 in the paper that balances the cross entropy loss and the
contrastive loss. As Table 6 shows, optimizing the proposed contrastive loss is able to improve segmentation performance
consistently while different λcl produce quite different mIoUs. The best mIoU is obtained when λcl = 0.10.

λcl 0.0 0.05 0.10 0.15 1.0

mIoU 24.4 28.2 28.6 27.3 25.1

Table 6. Performance of PointDR models with different contrastive loss weight λcl in Eq. 2 in the paper.

Table 7 below shows segmentation performance with different momentum values (m) used for updating the memory bank
B. It performs reasonably well when m is 0.98 or 0.99, showing that a slowly progressing memory bank is beneficial.
However, when m is too large (at 0.999), the memory bank updates too slowly to capture the latest and representative feature
embeddings, which fails to serve as the class-wise proxy and ultimately leads to a clear segmentation performance drop.

m 0.98 0.99 0.999

mIoU 28.1 28.6 26.1

Table 7. Performance of PointDR models with different momentum updated weight m for the memory bank B.



B. Domain adaptation
B.1. Implementation details

In Tables 4 and 5 of the submitted paper, we examine state-of-the-art UDA methods over the proposed normal-to-adverse
UDA scenario. Specifically, we selected typical UDA methods from the popular synthetic-to-real UDA benchmark [9, 17]
as the baseline methods as described in Section 5.2 of the paper. We adopt MinkowskiNet [2] as the segmentation model as
in synthetic-to-real UDA. When implementing ADDA [13], entropy minimization [14], and self-training [20], we follow the
same implementation and training configurations as the synthetic-to-real UDA [17] and leverage TorchSparse library [11]]
(with version 1.1.0) based on PyTorch [7] library. While for CoSMix [9], we use the officially released codes based on
MinkowskiEngine with default training parameters for the adaptation. We report mIoU of the covered classes for individual
adverse weather conditions in Table 5.

B.2. Detailed class-level results

In Tables 8, 9, 10, and 11 below, we present the class-level IoU performance for the UDA methods that are examined in
the setting of adaptation to individual conditions in Table 5 of the paper.
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Source-only 56.4 - - 10.1 0.0 0.6 15.4 0.0 68.0 0.6 22.8 0.0 63.6 36.6 62.8 29.4 53.5 17.7 19.5
ADDA [13] 63.4 - - 14.3 0.0 2.1 8.0 38.7 68.0 0.1 25.6 0.0 60.6 45.4 64.8 30.4 52.6 20.4 41.9
Ent-Min [14] 68.0 - - 4.9 0.0 1.9 7.6 0.0 74.8 0.0 39.4 0.0 68.8 50.5 61.0 28.3 63.3 22.7 43.2
Self-training [20] 68.2 - - 24.4 0.0 5.4 4.8 0.0 70.9 0.3 31.3 0.0 65.9 46.7 59.2 31.6 55.4 22.5 43.7
CoSMix [9] 76.5 - - 27.0 0.0 4.7 0.0 0.0 74.2 0.5 29.9 1.8 62.1 48.0 62.6 37.3 59.6 23.4 28.8

Table 8. Comparison of state-of-the-art domain adaptation methods on SemanticKITTI→SemanticSTF adaptation for dense fog. ’-’
represents no samples captured in dense fog in the validation set of SemanticSTF.
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Source-only 55.1 0.0 0.0 16.3 4.3 0.7 0.8 0.0 68.3 5.3 33.2 0.0 66.0 44.1 62.0 40.3 48.2 23.4 10.3
ADDA [13] 61.4 0.0 0.0 40.0 10.8 1.4 2.3 0.0 69.4 2.5 36.3 0.0 62.0 52.0 60.4 43.2 48.9 22.7 16.9
Ent-Min [14] 67.1 0.0 0.0 46.7 12.0 0.0 0.0 0.0 73.4 0.2 38.8 0.0 67.1 56.6 56.7 38.2 46.8 25.0 15.7
Self-training [20] 69.3 0.0 0.0 47.5 19.4 0.9 0.1 0.0 73.2 0.8 40.7 0.0 67.4 56.5 58.5 41.3 47.1 26.6 19.8
CoSMix [9] 74.9 0.4 1.3 19.3 1.6 26.1 0.0 0.0 70.3 10.0 35.0 1.1 67.1 54.7 64.1 46.4 49.4 25.4 28.7

Table 9. Comparison of state-of-the-art domain adaptation methods on SemanticKITTI→SemanticSTF adaptation for light fog.
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Source-only 69.4 0.0 - 0.1 0.1 12.1 0.0 - 72.9 9.7 54.5 0.0 73.7 31.2 55.2 16.2 21.4 33.9 18.8
ADDA [13] 71.8 0.0 - 0.1 0.7 3.8 0.0 - 71.9 9.2 51.5 0.0 67.8 35.6 53.6 17.8 25.7 32.0 24.2
Ent-Min [14] 78.4 0.0 - 0.4 2.9 0.1 0.0 - 80.3 10.1 57.9 0.0 78.0 47.1 53.8 13.0 24.1 35.8 33.8
Self-training [20] 69.4 0.0 - 0.1 0.1 12.1 0.0 - 72.9 9.7 54.5 0.0 73.7 31.2 55.2 16.2 21.4 33.9 18.8
CoSMix [9] 83.6 0.1 - 2.1 11.8 47.9 0.0 - 64.7 10.9 51.1 2.5 72.6 47.2 59.8 25.7 20.9 27.2 35.2

Table 10. Comparison of state-of-the-art domain adaptation methods on SemanticKITTI→SemanticSTF adaptation for rain. ’-’ represents
no samples captured in rain in the validation set of SemanticSTF.
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Source-only 70.7 0.0 0.0 15.4 1.6 5.1 - - 49.8 8.9 36.6 0.0 67.1 26.3 30.7 28.1 22.1 26.8 9.6
ADDA [13] 69.3 0.0 0.0 14.0 0.8 2.9 - - 55.3 1.3 35.7 0.0 67.2 26.7 37.5 30.1 21.2 25.4 11.0
Ent-Min [14] 73.8 0.0 15.4 19.8 1.4 2.9 - - 53.6 1.6 32.9 0.0 73.4 28.5 34.1 28.8 21.7 26.6 8.8
Self-training [20] 73.9 0.0 6.1 16.9 5.2 7.7 - - 53.9 6.2 34.3 0.0 69.3 27.7 33.7 29.8 19.5 26.9 16.0
CoSMix [9] 79.2 1.3 0.0 0.6 14.2 38.9 - - 70.1 15.1 54.1 6.3 74.6 44.1 58.3 20.5 20.4 26.9 35.6

Table 11. Comparison of state-of-the-art domain adaptation methods on SemanticKITTI→SemanticSTF adaptation for snow. ’-’ represents
no samples captured in snow in the validation set of SemanticSTF.



C. Supervised learning on adverse conditions
We use SemanticSTF to train five state-of-the-art 3DSS models in a supervised manner and report their segmentation

performance in Table 12. Specifically, we use their officially released codes and default training configurations for model
training. We can see that these state-of-the-art models achieve much lower segmentation performance over SemanticSTF
as compared with their performance over SemanticKITTI. The results indicate that SemanticSTF is a more challenging
benchmark for supervised methods due to the diverse data distribution and hard geometric domains. In addition, comparing
Table 12 and Table 6 of the submitted paper, we notice that the rankings of the supervised and the pre-trained 3DSS models
are not well aligned, indicating that the ability of supervised representation learning may not be highly correlated with the
generalization ability. We also notice that the state-of-the-art network Cylinder3D [19] achieves much lower segmentation
performance over SemanticSTF as compared with its performance over SemanticKITTI . This could be due to two major
factors: 1) The design of Cylinder3D is sensitive to complicated and noisy geometries of point clouds as introduced by
various adverse weather conditions; 2) Cylinder3D is sensitive to training parameters and the default training configurations
for SemanticKITTI does not work well for SemanticSTF. The results further demonstrate the importance of studying universal
3DSS as well as the value of the proposed SemanticSTF dataset in steering the future endeavour along this very meaningful
research direction.
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RandLA-Net [5] 75.2 0.0 0.0 25.8 0.0 47.3 0.0 0.0 73.3 7.8 48.7 57.5 68.2 48.3 61.5 27.3 49.5 39.7 27.5 56.5 35.7
SalsaNext [3] 77.3 31.2 0.0 47.5 30.5 64.2 26.6 5.0 76.3 18.2 55.2 64.9 79.2 50.4 56.8 27.8 55.8 36.8 36.7 62.2 45.1

MinkowskiNet [2] 87.4 42.5 0.0 51.2 40.3 73.6 29.1 0.0 79.5 15.0 57.7 63.4 78.6 56.8 64.4 40.4 53.3 47.6 47.6 67.7 49.8
SPVCNN [12] 87.1 45.5 0.0 53.1 42.7 74.1 21.9 0.0 78.9 16.3 57.9 57.0 78.6 56.5 65.6 40.9 50.3 49.4 45.9 66.4 49.4

Cylinder3D [19] 77.7 31.7 2.7 43.4 23.8 67.8 18.4 0.0 78.5 10.0 51.8 48.7 81.2 56.0 63.4 38.3 52.1 48.0 43.0 63.9 45.0

Table 12. Comparison of state-of-the-art 3DSS methods (trained in a supervised manner) over the test set of SemanticSTF.

D. Additional Details on SemanticSTF Dataset
D.1. Annotation

In this section, we explain the implementation of our point cloud labeling in more detail. We leveraged a professional
labeling program that has multiple annotating tools such as a brush, a polygon tool, a bounding volume tool, as well as
different filtering methods for hiding labeled points or selected labels. Corresponding 2D images are displayed to assist
labelling. The program also supports cross-checking and correction as illustrated in the main paper. Fig. 1 shows the
interface of our point cloud annotation program.

Figure 1. The interface of point cloud labeling program for annotating SemanticSTF.



D.2. Semantic class definition

In the process of labeling such challenging data, we had to decide which classes we wanted to annotate at some point in
time. In general, we followed the class definitions of the SemanticKITTI dataset [1] and ACDC [8] dataset, but did some
simplifications and adjustments for the data source used. The annotated classes with their respective definitions are listed in
Table 13 below.

cat. class definition

fla
t

road Drivable areas where cars could drive on including main road, bike lanes, and crossed areas on the street. Road curb is excluded.

sidewalk Paths along sides of the road, used for pedestrians and bicycles, but cars are not allowed to drive on. Also include private driveways.

parking Areas for parking and are clearly different from sidewalk and road. If unclear then other-ground or sidewalk can be selected. Garages are
labeled as building instead of parking.

other-ground Ground that excludes sidewalk, terrain, road, and parking. It includes (paved/plastered) traffic islands that are not meant for walking.

co
ns

tr
uc

tio
n building All building parts including walls, doors, windows, stairs, and garages, etc.

fence Separators including wood or metal fences, small walls and crash barriers.

ve
hi

cl
e

car Different types of cars, including cars, jeeps, SUVs, and vans.

truck Trucks, vans with a body that is separate from the driver cabin, pickup trucks, as well as their attached trailers.

bicycle Including different types of bicycles, without any riders or pedestrians nearby.

motorcycle Including different types of motorcycles, without any riders or pedestrians nearby.

other-vehicle Other types of vehicles that do not belong to previously defined vehicle classes, such as various trailers, excavators, forklifts, and fallbacks.

na
tu

re

vegetation Including bushes, shrubs, foliage, treetop except for trunks, and other clearly identifiable vegetation.

trunk The tree trunk is labeled as trunk separately from the treetop.

terrain Mainly include grass and soil.

hu
m

an

person Humans that are standing, walking, sitting, or in any other pose, but not driving any vehicle. Trolley cases, strollers, and pets nearby are
excluded.

bicyclist Humans driving a bicycle or standing in close range to a bicycle (within arm reach).

motorcyclist Humans driving a motorcycle or standing in close range to a motorcycle (within arm reach).

ob
je

ct pole Lamp posts, the poles of traffic signs and traffic lights.

traffic sign Traffic signs excluding their mounting.

invalid Indiscernible semantic contents caused by adverse weather, such as points of thick snow cover, falling snow or rain droplets, and the splash
from the rear of the moving vehicles when driving on the road of snow or water.

Table 13. Definitions of semantic classes in SemanticSTF.
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