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We provide more experiment details of domain adaptation and domain generalization in Section A and Section B, respec-
tively, supervised learning on adverse conditions in Section C and additional details on SemanticSTF dataset in Section D.

A. Domain generalization
A.1. Implementation details

We provide the detailed training configurations for semantic segmentation of LiDAR point clouds that have been adopted
as described in Sec. 5.1 of the submitted paper. Specifically, we implement the backbone model MinkowskiNet [2] with
the TorchSparse library [ 1]. For training, we use SGD optimizer. The learning rate, momentum and weight decays are set
as 0.24,0.9, and 1.4e — 4, respectively. 7 in Eq. 1 in the paper is set as 0.07 [4, 15] and A, in Eq. 2 is set as 0.1. The
momentum coefficient m is set at 0.99. We train 50 epochs with one NVIDIA 2080Ti with 11GB GPU memory and set the
batch size at 4. The augmentations of training data in the source-domain are implemented as follows: For rotation, LIDAR
points are rotated with the range of [0, 360°] along Z axis. For scale, the coordinates of LIDAR points are randomly scaled
within [0.95, 1.05]. For drop-out, we randomly drop-out 0-20% points of input LiIDAR scans with a probability of 0.5. As
for noise perturbation, 0 — 2,000 random points are added into the 3D space of each LiDAR scan with a probability of 0.5.
When using flipping, we randomly flip coordinates of LiDAR point clouds along x or y axis with a probability of 0.5. As for
Jittering, random coordinate shifts with a range of [—0.05, 0.05] meters are added into LiDAR points with a probability of
0.5.

In training the oracle model, we employ the SGD optimizer with the hyperparameters including initial learning rate at
0.1, momentum at 0.9, weight decay at 1.0e — 4, and dampening at 0.1. We train the segmentation model with 500 epochs
using a single NVIDIA 2080Ti with 11GB GPU memory. The batch size is set as 4. We use Poly learning rate policy with
power= 0.9. As for data augmentations, we follow [12] and adoptes random rotation ([—, 7]) and scaling ([0.95, 1.05]); We
also adopts PolarMix [16] with following parameter settings: Rotation angles along the Z-axis, denoted as 2, are randomly
scaled within normal distributions with a mean of ;z = 0 and standard deviation of o = %w. We keep the original instance
classes for rotate-pasting in PolarMix.

A.2. Evaluation of individual adverse weather conditions

We noticed that for certain individual adverse weather conditions, some class has no data captured in the validation set
of SemanticSTF. Specifically, there are no points of bicycle and motorcycle in the validation set of dense fog; no points of
bicyclist and motorcyclist in the validation set of snow, and no bicycle and motorcyclist in the validation set of rain. This
is reasonable as the LiDAR data of SemanticSTF is collected in European countries including Germany, Sweden, Denmark,
and Finland where motorcycles are not widely used for the reason of environmental protection. In addition, people usually
do not ride bicycles or motorcycles in adverse weather conditions. As a result, classes motor, motorcyclist, and bicyclist
have extremely lower occurrence frequency, leading to an absence of these classes in the validation set of SemanticSTF
under relevant weather conditions. Tables 1, 2, 3, and 4 present corresponding class-level IoU performance for each adverse
weather in Table 3 of the submitted paper.
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SemanticKITTI— SemanticSTF(dense fog)
Baseline 747 - - 7.8 00 64 89 00 722 0.6 338 00 596 48.7 569 274 564 272 21.1
Dropout [10] 67.5 - 1.9 0.0 89 28 00 709 56 290 0.8 646 440 60.0 316 606 28.1 213
Perturbation 68.6 - - 8.8 00 6.0 00 00 666 148 243 0.1 522 435 60.1 194 541 163 115
PolarMix [16] 523 - - 172 00 36 00 193 752 00 287 06 624 495 605 290 554 208 307
MMD [6] 755 - - 0.3 00 42 00 00 754 112 336 05 648 517 647 261 623 230 23.0
PCL [18] 64.3 - - 11.7 00 06 0.0 0.0 72.4 3.8 31.3 08 63.1 465 657 194 643 185 289
PointDR (Ours) | 69.2 - - 7.1 0.0 24 6.7 0.0 735 8.5 336 02 656 476 636 31.0 60.7 244 388
SynLiDAR—SemanticSTF(dense fog)
Baseline 21.6 - - 64 00 37 29 189 257 0.0 7.7 1.0 412 225 523 154 555 9.3 2.4
Dropout [10] 127 - - 7.7 00 19 04 2.5 38.3 0.1 102 03 373 21.8 574 13.1 445 10.1 1.0
Perturbation 133 - - 104 00 43 28 191 300 0.7 8.8 1.2 305 175 489 184 503 16.3 5.2
PolarMix [16] 158 - - 106 00 15 1.7 3.5 27.7 0.0 99 03 462 289 592 135 495 4.4 1.7
MMD [6] 26.5 - - 127 00 27 40 223 306 0.0 94 0.0 316 217 526 139 543 8.9 2.5
PCL [18] 229 - - 201 00 22 62 283 290 0.0 92 26 379 229 545 114 459 8.5 1.1
PointDR (Ours) | 42.5 - - 166 00 24 32 122 319 02 90 0.8 428 27.1 59.8 183 440 154 57
Table 1. Class-wise IoU on domain generalization with SemanticKITTI or SynLiDAR as the source and validation set of dense fog in

SemanticSTF as the target. ’-

> represents no samples captured in dense fog in the validation set of SemanticSTFE.
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SemanticKITTI—SemanticSTF(light fog)
Baseline 60.0 00 0.0 1.3 109 123 0.0 00 686 45 360 0.0 615 531 556 38.0 447 292 182
Dropout [10] 632 00 00 32 102 5.5 00 00 638 49 294 0.1 625 531 586 425 46.6 278 143
Perturbation 76.6 0.0 0.0 382 00 219 00 00 666 88 346 01 624 561 632 253 462 224 6.5
PolarMix [16] 426 02 00 294 33 170 00 02 698 0.7 331 01 562 563 549 247 448 241 16.6
MMD [6] 636 00 00 0.1 133 259 00 00 739 56 428 0.1 641 553 619 366 507 292 99
PCL [18] 663 00 00 267 02 8.7 0.0 00 678 50 367 04 643 580 66.1 212 531 255 246
PointDR (Ours) | 659 00 0.0 29.7 44 114 09 00 709 88 433 0.0 665 551 613 430 49.1 29.1 243
SynLiDAR— SemanticSTF(light fog)
Baseline 320 42 05 273 02 140 62 00 310 00 126 09 387 248 51.5 267 464 85 1.3
Dropout [10] 225 30 09 160 0.1 100 52 02 403 13 181 00 389 221 57.6 235 385 138 3.7
Perturbation 31.1 19 16 215 0.0 125 26 00 332 16 143 1.1 343 20.1 48.7 298 420 167 45
PolarMix [16] 273 03 04 89 14 8.2 1.2 00 290 02 155 0.7 399 274 573 288 409 58 1.5
MMD [6] 31.0 21 05 160 0.0 10.5 1.7 00 377 03 163 0.6 292 249 518 29.6 478 83 1.8
PCL [18] 31.7 07 0.8 10.1 0.1 102 216 00 339 06 161 0.1 37.8 222 525 238 426 113 22
PointDR (Ours) | 447 1.7 1.0 339 03 129 47 00 360 09 158 07 444 303 600 283 424 151 57
Table 2. Class-wise IoU on domain generalization with SemanticKITTI or SynLiDAR as the source and validation set of light fog in

SemanticSTF as the target.
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SemanticKITTI— SemanticSTF(rain)
Baseline 724 00 - 00 163 69 00 - 716 127 581 00 700 33.0 51.8 99 242 333 229
Dropout [10] 81.3 0.0 - 00 212 56 0.0 622 118 448 06 768 447 560 163 233 328 222
Perturbation 839 0.0 - 2.4 00 209 00 - 732 126 547 7.0 7177 432 583 59 294 294 169
PolarMix [16] 56.7 4.0 - 9.1 1.5 298 00 - 682 109 502 05 732 472 483 17.8 223 323 14.1
MMD [6] 839 0.0 - 0.0 89 316 00 - 779 179 602 03 69.6 393 584 141 325 340 30.0
PCL [18] 842 0.0 - 0.0 0.1 43 00 - 68.1 109 555 46 747 439 596 58 273 342 388
PointDR (Ours) | 780 0.0 - 00 138 200 00 - 721 147 60.0 12 76.1 369 580 183 247 36.1 325
SynLiDAR— SemanticSTF(rain)

Baseline 458 45 - 6.8 04 389 00 - 320 00 243 00 430 80 338 11.3 239 115 177
Dropout [10] 470 76 - 7.7 00 340 00 - 473 69 346 00 398 115 375 138 296 216 8.6
Perturbation 575 53 - 182 00 363 01 - 371 1.5 269 03 349 104 326 122 205 232 104
PolarMix [16] 596 15 - 6.0 52 246 10 - 314 0.1 304 00 555 122 446 131 250 11.0 47
MMD [6] 495 48 - 200 47 376 00 - 437 00 324 00 421 113 344 123 251 134 8.1
PCL [18] 513 09 - 4.3 21 356 00 - 414 00 320 00 548 97 37.1 114 242 166 6.3
PointDR (Ours) | 422 33 - 219 00 304 17 - 358 32 319 00 540 144 407 125 319 236 11.8

Table 3. Class-wise IoU on domain generalization with SemanticKITTI or SynLiDAR as the source and validation set of rain in Seman-
represents no samples captured in rain in the validation set of SemanticSTF.

ticSTF as the target. *-’
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SemanticKITTI— SemanticSTF(snow)
Baseline 495 00 03 05 116 108 - - 421 149 239 00 715 267 293 240 17.8 30.8 10.1
Dropout [10] 585 00 305 54 132 52 - - 419 180 204 25 764 305 31.8 327 198 282 7.0
Perturbation 736 00 00 55 1.1 198 - - 457 109 344 0.1 806 328 452 128 200 244 95
PolarMix [16] 665 34 93 35 58 324 - - 553 36 301 01 778 36.1 342 126 251 298 10.1
MMD [6] 594 00 47 00 147 305 - - 508 169 328 02 684 244 366 241 241 300 114
PCL [18] 640 00 00 82 0.7 9.2 - - 389 152 316 23 79.6 351 413 112 23.1 30.1 268
PointDR (Ours) | 66.2 0.0 104 00 16.7 213 - - 430 152 330 17 768 303 36.1 27.6 222 300 14.1
SynLiDAR— SemanticSTF(snow)

Baseline 246 2.7 1.5 2.4 0.0 322 - - 129 0.4 183 0.0 333 138 157 149 181 10.1 1.9
Dropout [10] 359 28 37 30 00 219 - - 209 100 228 00 332 148 171 168 165 157 26
Perturbation 271 24 68 68 02 310 - - 154 48 197 00 263 124 140 220 164 190 4.1
PolarMix [16] 534 23 41 60 12 279 - - 117 19 215 03 452 208 21.7 188 165 105 1.7
MMD [6] 208 27 60 48 02 313 - - 201 05 210 01 296 122 150 166 21.8 113 24
PCL [18] 307 1.1 44 62 03 346 - - 191 1.7 220 03 378 126 164 142 199 147 3.0
PointDR (Ours) | 342 40 7. 75 0. 362 - - 138 120 227 00 488 199 199 189 17.0 20.7 3.

Table 4. Class-wise IoU on domain generalization with SemanticKITTI or SynLiDAR as the source and validation set of snow in Seman-
ticSTF as the target. ’-’ represents no samples captured in snow in the validation set of SemanticSTF.

A.3. Ablation study

Data augmentation. We study how data augmentation techniques affect generalized semantic segmentation of point clouds
(3DSS) and compare them with the proposed PointDR. As Table 5 shows, we report seven models over the benchmark
“SemanticKITTI—SemanticSTF”: 1) The Baseline is a source-only model that is trained by using the training data of Se-
manticKITTI; 2) The drop-out, noise perturbation, flipping, and jittering are segmentation models with different augmen-
tation techniques over input data; A/l is the model that combines of all these augmentation techniques; 3) Our proposed
PointDR. We can see that implementing each of these augmentation techniques improves the generalization capability of
the segmentation model clearly and consistently. However, the combination of them all did not yield the best segmentation
performance, largely because the combination brings too many distortions to the input point clouds. On the contrary, the pro-
posed PointDR achieves the best segmentation performance, indicating its superior ability to learn universal representations
for all-weather 3DSS.

Method | Baseline | drop-out perturbation flipping jittering All | PointDR
mloU | 24.4 | 25.7 259 25.2 26.9 26.1 | 28.6

Table 5. Comparison of data augmentation techniques and the proposed PointDR. PointDR performs clearly the best over domain general-
ized segmentation task SemanticKITTI—SemanticSTFE.

Parameter analysis. We examine the parameter A.; in Eq. 2 in the paper that balances the cross entropy loss and the
contrastive loss. As Table 6 shows, optimizing the proposed contrastive loss is able to improve segmentation performance
consistently while different \.; produce quite different mloUs. The best mloU is obtained when A.; = 0.10.

Aa | 00 0.05 0.10 0.15 1.0
mloU | 244 28.2 28.6 27.3 25.1
Table 6. Performance of PointDR models with different contrastive loss weight A.; in Eq. 2 in the paper.

Table 7 below shows segmentation performance with different momentum values (m) used for updating the memory bank
B. It performs reasonably well when m is 0.98 or 0.99, showing that a slowly progressing memory bank is beneficial.
However, when m is too large (at 0.999), the memory bank updates too slowly to capture the latest and representative feature
embeddings, which fails to serve as the class-wise proxy and ultimately leads to a clear segmentation performance drop.

m | 098 0.99 0.999
mloU | 28.1 28.6 26.1
Table 7. Performance of PointDR models with different momentum updated weight m for the memory bank B.




B. Domain adaptation
B.1. Implementation details

In Tables 4 and 5 of the submitted paper, we examine state-of-the-art UDA methods over the proposed normal-to-adverse
UDA scenario. Specifically, we selected typical UDA methods from the popular synthetic-to-real UDA benchmark [9, 17]
as the baseline methods as described in Section 5.2 of the paper. We adopt MinkowskiNet [2] as the segmentation model as
in synthetic-to-real UDA. When implementing ADDA [13], entropy minimization [ 4], and self-training [20], we follow the
same implementation and training configurations as the synthetic-to-real UDA [17] and leverage TorchSparse library [ 1 1]]
(with version 1.1.0) based on PyTorch [7] library. While for CoSMix [9], we use the officially released codes based on
MinkowskiEngine with default training parameters for the adaptation. We report mloU of the covered classes for individual
adverse weather conditions in Table 5.

B.2. Detailed class-level results

In Tables 8, 9, 10, and 11 below, we present the class-level IoU performance for the UDA methods that are examined in
the setting of adaptation to individual conditions in Table 5 of the paper.
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Source-only 564 - - 101 00 06 154 00 680 06 228 00 636 366 628 204 535 177 195
ADDA [ 3] 634 - - 143 00 21 80 387 680 01 256 00 606 454 648 304 3526 204 419
Ent-Min [ 1] 680 - - 49 00 19 76 00 748 00 394 00 638 505 610 283 633 227 432
Self-training [20] | 682 - - 244 00 54 48 00 709 03 313 00 659 467 592 316 554 225 437
CoSMix [9] 76.5 - - 270 00 4.7 0.0 0.0 742 05 299 1.8 62.1 480 626 373 596 234 288

D)

Table 8. Comparison of state-of-the-art domain adaptation methods on SemanticKITTI—SemanticSTF adaptation for dense fog. ’-
represents no samples captured in dense fog in the validation set of SemanticSTF.

0o L = . 5 2 = 3 o g o < ~ ;
s 9 2 g 5 Z o 2 % = 8 & = 2 & g £ =2 o
Methods § £ 8 B % & =2 8 € & % % 2 & ¢ E 3 & E
Source-only 551 00 00 163 43 07 08 00 683 53 332 00 660 441 620 403 482 234 103
ADDA [13] 614 00 00 400 108 14 23 00 694 25 363 0.0 620 520 604 432 489 227 169
Ent-Min [14] 67.1 00 00 467 120 00 00 00 734 02 388 0.0 67.1 56.6 567 382 468 250 157
Self-training [20] | 69.3 0.0 0.0 475 194 09 01 00 732 08 407 00 674 565 585 413 47.1 266 198
CoSMix [Y] 749 04 13 193 16 261 00 00 703 100 350 1.1 67.1 547 641 464 494 254 287
Table 9. Comparison of state-of-the-art domain adaptation methods on SemanticKITTI—SemanticSTF adaptation for light fog.
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Source-only 694 00 - 01 0.1 121 00 - 729 9.7 545 0.0 737 312 552 162 214 339 188
ADDA [13] 71.8 00 - 01 07 38 00 - 719 92 515 00 67.8 356 536 17.8 257 320 242
Ent-Min [14] 784 00 - 04 29 01 00 - 803 101 579 0.0 780 47.1 538 130 241 358 338
Self-training [20] | 694 00 - 01 01 121 00 - 729 97 545 0.0 737 312 552 162 214 339 188
CoSMix [Y] 86 01 - 21 11.8 479 00 - 647 109 511 25 726 472 598 257 209 272 352

Table 10. Comparison of state-of-the-art domain adaptation methods on SemanticKITTI— SemanticSTF adaptation for rain. ’-’ represents
no samples captured in rain in the validation set of SemanticSTF.
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Source-only 707 00 00 154 16 51 - - 498 89 366 00 671 263 307 281 221 268 96
ADDA [13] 693 00 00 140 08 29 - - 553 13 357 00 672 267 375 301 212 254 110
Ent-Min [ 1] 7383 00 154 198 14 29 - - 336 16 329 00 734 285 341 288 217 266 83
Self-training [20] | 739 0.0 61 169 52 77 - - 539 62 343 00 693 277 337 208 195 269 16.0
CoSMix [] 792 13 00 06 142 389 - - 701 151 541 63 746 441 583 205 204 269 356

Table 11. Comparison of state-of-the-art domain adaptation methods on SemanticKITTI—SemanticSTF adaptation for snow. ’-’ represents
no samples captured in snow in the validation set of SemanticSTF.



C. Supervised learning on adverse conditions

We use SemanticSTF to train five state-of-the-art 3DSS models in a supervised manner and report their segmentation
performance in Table 12. Specifically, we use their officially released codes and default training configurations for model
training. We can see that these state-of-the-art models achieve much lower segmentation performance over SemanticSTF
as compared with their performance over SemanticKITTI. The results indicate that SemanticSTF is a more challenging
benchmark for supervised methods due to the diverse data distribution and hard geometric domains. In addition, comparing
Table 12 and Table 6 of the submitted paper, we notice that the rankings of the supervised and the pre-trained 3DSS models
are not well aligned, indicating that the ability of supervised representation learning may not be highly correlated with the
generalization ability. We also notice that the state-of-the-art network Cylinder3D [19] achieves much lower segmentation
performance over SemanticSTF as compared with its performance over SemanticKITTI . This could be due to two major
factors: 1) The design of Cylinder3D is sensitive to complicated and noisy geometries of point clouds as introduced by
various adverse weather conditions; 2) Cylinder3D is sensitive to training parameters and the default training configurations
for SemanticKITTI does not work well for SemanticSTF. The results further demonstrate the importance of studying universal

3DSS as well as the value of the proposed SemanticSTF dataset in steering the future endeavour along this very meaningful
research direction.
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RandLA-Net [5] | 752 00 00 258 00 473 00 00 733 7.8 487 575 682 483 615 273 495 397 275 565 357
SalsaNext [3] | 773 312 0.0 475 30.5 642 266 50 763 182 552 649 792 504 563 278 558 36.8 367 622 | 451
MinkowskiNet [2] | 874 425 0.0 512 403 73.6 291 0.0 795 150 577 634 78.6 568 644 404 533 476 476 67.7| 498
SPVCNN [17]| 871 455 0.0 531 427 741 219 00 789 163 579 570 786 565 656 409 50.3 494 459 66.4| 494
Cylinder3D [10] [ 777 317 277 434 238 678 184 0.0 785 100 51.8 487 812 560 634 383 521 480 430 63.9| 450

Table 12. Comparison of state-of-the-art 3DSS methods (trained in a supervised manner) over the test set of SemanticSTE.

D. Additional Details on SemanticSTF Dataset
D.1. Annotation

In this section, we explain the implementation of our point cloud labeling in more detail. We leveraged a professional
labeling program that has multiple annotating tools such as a brush, a polygon tool, a bounding volume tool, as well as
different filtering methods for hiding labeled points or selected labels. Corresponding 2D images are displayed to assist
labelling. The program also supports cross-checking and correction as illustrated in the main paper. Fig. 1 shows the
interface of our point cloud annotation program.
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Figure 1. The interface of point cloud labeling program for annotating SemanticSTF.



D.2. Semantic class definition

In the process of labeling such challenging data, we had to decide which classes we wanted to annotate at some point in
time. In general, we followed the class definitions of the SemanticKITTI dataset [1] and ACDC [8] dataset, but did some
simplifications and adjustments for the data source used. The annotated classes with their respective definitions are listed in
Table 13 below.

cat. class definition
road Drivable areas where cars could drive on including main road, bike lanes, and crossed areas on the street. Road curb is excluded.
sidewalk Paths along sides of the road, used for pedestrians and bicycles, but cars are not allowed to drive on. Also include private driveways.
£ parking Areas for parking and are clearly different from sidewalk and road. If unclear then other-ground or sidewalk can be selected. Garages are

labeled as building instead of parking.

other-ground Ground that excludes sidewalk, terrain, road, and parking. It includes (paved/plastered) traffic islands that are not meant for walking.

g building All building parts including walls, doors, windows, stairs, and garages, etc.
ks
g
g fence Separators including wood or metal fences, small walls and crash barriers.
o
car Different types of cars, including cars, jeeps, SUVs, and vans.
» truck Trucks, vans with a body that is separate from the driver cabin, pickup trucks, as well as their attached trailers.
o]
% bicycle Including different types of bicycles, without any riders or pedestrians nearby.
>
motorcycle  Including different types of motorcycles, without any riders or pedestrians nearby.
other-vehicle Other types of vehicles that do not belong to previously defined vehicle classes, such as various trailers, excavators, forklifts, and fallbacks.
o Vvegetation Including bushes, shrubs, foliage, treetop except for trunks, and other clearly identifiable vegetation.
-
% trunk The tree trunk is labeled as trunk separately from the treetop.
=
terrain Mainly include grass and soil.
person Humans that are standing, walking, sitting, or in any other pose, but not driving any vehicle. Trolley cases, strollers, and pets nearby are
= excluded.
£
E bicyclist Humans driving a bicycle or standing in close range to a bicycle (within arm reach).
motorcyclist Humans driving a motorcycle or standing in close range to a motorcycle (within arm reach).
E pole Lamp posts, the poles of traffic signs and traffic lights.
=
© trafficsign  Traffic signs excluding their mounting.
invalid Indiscernible semantic contents caused by adverse weather, such as points of thick snow cover, falling snow or rain droplets, and the splash
from the rear of the moving vehicles when driving on the road of snow or water.
Table 13. Definitions of semantic classes in SemanticSTF.
References

[1] Jens Behley, Martin Garbade, Andres Milioto, Jan Quenzel, Sven Behnke, Cyrill Stachniss, and Jurgen Gall. Semantickitti: A dataset
for semantic scene understanding of lidar sequences. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 9297-9307, 2019. 6

[2] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d spatio-temporal convnets: Minkowski convolutional neural networks.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 3075-3084, 2019. 1,4, 5

[3] Tiago Cortinhal, George Tzelepis, and Eren Erdal Aksoy. Salsanext: Fast, uncertainty-aware semantic segmentation of lidar point
clouds. In International Symposium on Visual Computing, pages 207-222. Springer, 2020. 5



(4]

(5]

(6]

(7]

(8]
(9]
[10]
(11]
[12]
(13]

[14]

[15]
(16]
(7]

(18]

(19]

[20]

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for unsupervised visual representation
learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 9729-9738, 2020. 1
Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua Wang, Niki Trigoni, and Andrew Markham. Randla-net:
Efficient semantic segmentation of large-scale point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 11108-11117, 2020. 5

Haoliang Li, Sinno Jialin Pan, Shiqi Wang, and Alex C Kot. Domain generalization with adversarial feature learning. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 5400-5409, 2018. 2, 3

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep learning library. Advances in neural information
processing systems, 32, 2019. 4

Christos Sakaridis, Dengxin Dai, and Luc Van Gool. Acdc: The adverse conditions dataset with correspondences for semantic driving
scene understanding. In Proceedings of the IEEE/CVF International Conference on Computer Vision, pages 10765-10775, 2021. 6
Cristiano Saltori, Fabio Galasso, Giuseppe Fiameni, Nicu Sebe, Elisa Ricci, and Fabio Poiesi. Cosmix: Compositional semantic mix
for domain adaptation in 3d lidar segmentation. ECCV, 2022. 4

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine learning research, 15(1):1929-1958, 2014. 2, 3

Haotian Tang, Zhijian Liu, Xiuyu Li, Yujun Lin, and Song Han. TorchSparse: Efficient Point Cloud Inference Engine. In Conference
on Machine Learning and Systems (MLSys), 2022. 1, 4

Haotian Tang, Zhijian Liu, Shengyu Zhao, Yujun Lin, Ji Lin, Hanrui Wang, and Song Han. Searching efficient 3d architectures with
sparse point-voxel convolution. In European conference on computer vision, pages 685-702. Springer, 2020. 1, 5

Eric Tzeng, Judy Hoffman, Kate Saenko, and Trevor Darrell. Adversarial discriminative domain adaptation. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages 7167-7176, 2017. 4

Tuan-Hung Vu, Himalaya Jain, Maxime Bucher, Matthieu Cord, and Patrick Pérez. Advent: Adversarial entropy minimization
for domain adaptation in semantic segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2517-2526, 2019. 4

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-parametric instance discrimination.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 3733-3742, 2018. 1

Aoran Xiao, Jiaxing Huang, Dayan Guan, Kaiwen Cui, Shijian Lu, and Ling Shao. Polarmix: A general data augmentation technique
for lidar point clouds. NeurIPS, 2022. 1,2, 3

Aoran Xiao, Jiaxing Huang, Dayan Guan, Fangneng Zhan, and Shijian Lu. Transfer learning from synthetic to real lidar point cloud
for semantic segmentation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 36, pages 2795-2803, 2022. 4
Xufeng Yao, Yang Bai, Xinyun Zhang, Yuechen Zhang, Qi Sun, Ran Chen, Ruiyu Li, and Bei Yu. Pcl: Proxy-based contrastive
learning for domain generalization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
7097-7107, 2022. 2, 3

Xinge Zhu, Hui Zhou, Tai Wang, Fangzhou Hong, Yuexin Ma, Wei Li, Hongsheng Li, and Dahua Lin. Cylindrical and asymmet-
rical 3d convolution networks for lidar segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 9939-9948, 2021. 5

Yang Zou, Zhiding Yu, Xiaofeng Liu, BVK Kumar, and Jinsong Wang. Confidence regularized self-training. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 5982-5991, 2019. 4



	. Domain generalization
	. Implementation details
	. Evaluation of individual adverse weather conditions
	. Ablation study

	. Domain adaptation
	. Implementation details
	. Detailed class-level results

	. Supervised learning on adverse conditions
	. Additional Details on SemanticSTF Dataset
	. Annotation
	. Semantic class definition


