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A. Derivations

Since we use SGD optimizer in the whole training pro-
cess, we derive the EMA [4] and our EWF in the SGD
algorithm. For simplicity, we use constant value 1 to replace
the learning rate. Given that EMA algorithm is defined as:

vi = βvi−1 + (1− β)θi (1)

The derivation process of the EMA algorithm is as follows:

vn = βvn−1 + (1− β)θn

= β2vn−2 + (1− β)βθn−1 + (1− β)θn

= ...

= βnv1 + (1− β)

n−1∑
k=0

βkθn−k

= βnθ1 + (1− β)(βn−1θ1 + βn−2θ2 + ...+ β1θn−1 + θn)

= βnθ1 + (1− β)(βn−1θ1 + ...+ θ1 −
n−1∑
k=1

∇L(θ
k))

= θ1 −
n−1∑
k=1

(1− βn−k)∇L(θ
k)

(2)
And the derivation of the EWF algorithm is as follows:

θbalance = αθn + (1− α)θ1

= θ1 − α

n−1∑
k=1

∇L(θ
k)

(3)

As shown in Eq.2 and Eq.3, EMA concentrates more on
the early steps, and pays less attention to the gradient of
subsequent steps. We have shown that the similarity of early
steps drops dramatically, leading to noisy information. On
the contrary, our method focuses more evenly on the gradient
of each part, which results in better performance.

B. Baseline Details

In this section, we describe more about the loss functions
and implementation details in our algorithm.

Objectives. In this work, we use distillation to enhance
our weight fusion strategy. Feature-based distillation and
logits-based distillation are two main schemes in distillation
methods. The representative of the former in class incremen-
tal semantic segmentation is PLOP [2], while the one for
the latter is MiB [1]. In MiB [1], the distillation loss can be
formulated as Lunce and Lunkd.

Lunce = − 1

|I|
∑
i∈I

log p̂t(i, yi), (4)

Lunkd = − 1

|I|
∑
k∈C

∑
i∈I

qt−1(i, k) log q̂t(i, k), (5)

In Eq.4, yi ∈ {0, Ct} denotes the ground-truth label for the
i-th pixel. And p̂t(i) is modified from the predictions of
current model pt(i), regarding all old classes as background.
In Eq.5, qt−1 is the prediction of the old model, and C de-
notes all old classes and the background class. The q̂t(i) is
modified by predicted scores qt(i) of the current model. All
new classes are treated as the background class. To further
stabilize the training process of the classifier, and benefit
distillation loss, we fix the previously learned classifiers and
only learn the newly added classifier.

In PLOP [2], the distillation can be formulated as Lpod.

Lpod =
1

L

L∑
l=1

||Φ(f t
l (x))− Φ(f t−1

l (x))||2 (6)

where f t
l (x)/f

t−1
l (x) denotes features of different stages

from new and old models, respectively. And Φ denotes the
multi-scale strip pooling operation.
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Figure 1. The change of mIoU when perturbing the network parameters for both old classes and all classes (the lower the better).

Method
Task

A B C D E

ILT [3] 9.20 16.74 12.16 11.49 15.60 13.04 ± 2.76
MiB [1] 32.20 20.15 36.05 38.91 53.73 36.21±10.8

PLOP [2] 54.60 47.43 53.43 58.25 47.20 52.18 ± 4.28
RC-IL [5] 59.40 54.05 55.63 55.29 63.19 57.51 ± 3.35

MiB+EWF (ours) 65.56 59.15 63.37 63.52 64.31 63.19 ± 2.16

Table 1. The mIoU (%) of the final step. We conduct experiments on different class orders on 15-1 overlapped setting. The purple denotes
the mean mIoU (%) and standard variance over five different class orders.

C. Further Analyses

C.1. Different Class Orders

In order to verify the robustness of different class orders
for our method, following PLOP [2], we utilize 15-1 over-
lapped setting to run five class orders and show the standard
variance and mean value. It contains a sequential order and
four random orders provided by the code of PLOP [2]. The
result can be found in Table 1. Ours is more robust to differ-
ent orders and also obtains the best performance in terms of
average mIoU. The five orders are defined as:

A : {[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15], [16], [17], [18], [19], [20]},
B : {[0, 12, 9, 20, 7, 15, 8, 14, 16, 5, 19, 4, 1, 13, 2, 11], [17], [3], [6], [18], [10]},
C : {[0, 13, 19, 15, 17, 9, 8, 5, 20, 4, 3, 10, 11, 18, 16, 7], [12], [14], [6], [1], [2]}
D : {[0, 15, 3, 2, 12, 14, 18, 20, 16, 11, 1, 19, 8, 10, 7, 17], [6], [5], [13], [9], [4]},
E : {[0, 7, 5, 3, 9, 13, 12, 14, 19, 10, 2, 1, 4, 16, 8, 17], [15], [18], [6], [11], [20]}.

(7)

C.2. Model Robustness Analysis

With a new task being learned, fθ is required to perform
well over both old and new tasks. Different from multi-
task learning, the second step of optimization does not take
into account the optimization goal of the first step. In that
case, the model will easily bias to new data and trigger
catastrophic forgetting of old data. Nevertheless, model
with strong robustness naturally has the capability against
catastrophic forgetting. Thus, we test the robustness of the
original model (e.g., PLOP [2], MiB [1]) and the improved
model against disturbances with our algorithm.

To observe the fluctuation caused by the perturbation
ϵ, we choose the parameters of the first three sets of con-
volutions as the target of perturbation. ϵ is randomly se-
lected from gaussian distribution (i.e., N (0, 1)), and it will
be scaled with a scale factor γ ∈ [0, 1]. The fluctuation can
be viewed as:

F γϵ
θ = P (θ + γϵ;M)− P (θ;M), (8)



Figure 2. The qualitative comparison between different methods. All prediction results are from the last step of 15-1 overlapped setting. The
odd rows are the results of MiB [1], and the even rows are ours.
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where M denotes the whole test set and P denotes the per-
formance gained by parameter θ on M. In the case where
the norm of ϵ is bounded, the value of F γϵ

θ can represent
the robustness of model θ. As shown in Fig. 1 (a)-(b), our
method does enhance the robustness of the original model,
both in PLOP [2] and MiB [1].

C.3. More Analysis about EWF Performance Im-
provement.

The new classes in the main tables include all classes
learned after the base step. For instance, class 11 in 10-1 the
setting is a new category in the first incremental phase but an
old category in subsequent phases. Even if our method has a
certain drop of accuracy for the new class during fusion, in
the subsequent tasks, the forgetting is greatly reduced by our
method, thus resulting in better final accuracy.

C.4. Analysis on performance gap in Pascal VOC
5-3 setting

PLOP adopts pseudo-label strategy and uses a threshold
to filter out confident regions. When the number of base
classes is small, the model introduces noisy pseudo labels,
leading to much worse performance.

C.5. Ablation study for RC-IL’s distillation and
apple-to-apple comparison with EWF.

In order to show the adaptability of our method to differ-
ent distillations, we use the PCKD proposed by the current
state-of-the-art RCIL to combine with our method to observe
the performance change. We apply PCKD distillation used
in RC-IL [5] to compare to RC-IL directly, and it shows that
our method is much better than RC-IL [5]. The experiments
is conducted in PASCAL VOC 2012 15-1 setting and 10-1
setting.

Setting Method old new all
15-1 RC-IL (PCKD) 70.6 23.7 59.4

PCKD + EWF 77.6 34.4 67.3
10-1 RC-IL (PCKD) 55.4 15.1 34.3

PCKD + EWF 70.0 31.6 51.8

C.6. More Qualitative Results.

We display more results in Fig.2 and Fig.3 with MiB [1]
and ours for visualization comparison. It is clear that our
method has obtained a significant improvement in visual
quality.



Figure 3. More visualization comparison between MiB [1] and ours.
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