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A. Network Architecture Details
The architecture of our Level-S2fM is shown in Fig. 1.

We use dual fields to independently represent the radiance
field and signed distance field (SDF), which have the same
architecture. For each queried 3d point, we will first inter-
polate the feature of the queried points at multi-resolution
grids, and then concatenate the multi-resolution features
into the MLP to attain the density or the radiance. To ac-
celerate the training, we adopt the multi-resolution hash ta-
ble [9] in our implementation. In detail, we construct mul-
tiresolution grids of L levels, and the resolution of each
level is:

Nl :=
⌊
Nmin · bl

⌋
, (1)

b := exp

(
lnNmax − lnNmin

L− 1

)
, (2)

where Nmin and Nmax are the coarsest and finest resolu-
tions. In the multi-resolution hash table, to obtain the fea-
ture of point x, we first scale and round x at each level l as
⌊xl⌋ = ⌊x ·Nl⌋, ⌈xl⌉ = ⌈x ·Nl⌉. Then we can obtain the
voxel spanned by ⌊xl⌋ and ⌈xl⌉ and map each corner of the
voxel to the hash table using the spatial hash function:

h(x) =

(
3⊕

i=1

xiπi

)
mod T , (3)

where ⊕ denotes the bit-wise XOR operation, and πi are
unique, large prime numbers. In our implementation, π1,
π2, π3 and T are set to 1, 2654435761, 805459861, 219 re-
spectively. After that, the feature vectors at each corner are
interpolated at x by the interpolation weight wl = xl−⌊xl⌋.
Lastly, we concatenate the feature vector of x at each level,
as well as the encoded view direction v togehter, and send
it into an MLP to predict the values. In our implementation,
we leverage two different resolution hash tables to represent
the sdf and radiance fields respectively. For sdf function, the
configuration is L = 8, Nmin = 16, Nmax = 2048 and the
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Figure 1. The Multi-resolution Features Grid.

number of features at each level is 4. While the configu-
ration for radiance field is L = 16, Nmin = 16, Nmax =
2048 and the number of features at each level is 2.

B. Evaluation Metrics and Details
Because the world coordinate system varies for different

SfM systems, we need to align the estimated poses to the
ground truth poses first. We use the reconstruction align-
ment API from COLMAP [12], which first pre-aligns the
two reconstructions with their poses and refine that by align-
ing the sparse point clouds of them. Here, the sparse point
clouds are triangulated by the 2d matches of SIFT with the
fixed poses, which can be also easily implemented with the
existing COLMAP API. After the alignment, the rotation
error is computed as follows:

θerror
i = cos−1 trace(Rgt

i R̂
T
i )− 1

2
, i = {1, ...,M}, (4)

where the M is the number of the cameras, and Rgt
i , R̂i

T

are the gt rotation matrix and aligned estimated rotation ma-
trix respectively. We take the average error of the rotation
in Equation (4) as the metric for rotation. As for the eval-
uation of translation, we use the ATE RMSE [13] to depict
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Metric Definition
Acc meanp∈P (minp∗∈P∗||p−p∗||)
Prec meanp∈P (minp∗∈P∗||p−p∗||≤.035)

Table 1. Caption

Figure 2. The Visualization of Two View Initialization for
Inside-forward Scenes.

the distance between the ground truth trajectories and the
estimated, specifically followed:

RMSE(T̂i) =

(
1

M

M∑
i=0

||trans(T−1
i T̂i)||2

) 1
2

, (5)

where the Ti, T̂i are the gt and aligned transformation ma-
trix respectively, and the trans means to take the translation
part of the transformation matrix.

For the evaluation of reconstruction results, the defini-
tions of metrics are shown in Table. 1. We use these two
metrics to evaluate the accuracy of the reconstructed point
cloud.

C. Two View Initialization
Because the learning of neural implicit fields was orig-

inally designed for bounded scenes, we have to carefully
design the two-view initialization for our Level-S2fM and
ensure the incremental reconstruction process is within the
bound. In our study, we mainly focus on two representative
types of scenes. The first type is the inside-forward scene,
where the cameras are surrounded by the target object and
inside forwarding (Specifically seen in Figure. 2). The sec-
ond type is the outside-forward scenes. In initialization de-
tails for inside-forward scenes, we put the first camera on a
sphere with r = 3, and orient the camera toward the origin
of the coordinate. The bound of the features grid is set to

Figure 3. The Visualization of Two View Initialization for
Outside-forward Scenes.

Figure 4. Visualization of Mesh and Trajectory for Failure
Cases.This figure show the visualization of mesh and trajectory
in scannet. As we can see the pose and geometry begin to be bad
in the red box where the texture and matches are mostly less.

[4, 4, 4]. The initialized pose for the first camera is calcu-
lated by the following:

tinit
w2c = Rinit

w2ct
init
c2w,

tinit
c2w =

−r cos θy cos θz
−r cos θy sin θz

−r sin θy

 ,

Rinit
w2c = Rx(θx)

−1Ry(θy)
−1

Rz(θz)
−1

,

(6)

where the θx = 0, θy = − 1
4π, θz = 1

4π. After that, the pose
of the second camera is then initialized with the calculated
relative pose by five points algorithm [10]. Meanwhile,
the length of the translation of the relative pose would be
the hyper-parameter for different scenes. As shown in Fig-
ure. 2, the red line is the baseline of the two-view camera,
and the length of the baseline is empirically set. Moreover,
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Figure 5. Sphere Tracing and Depth Consistency.

for the outside-forward scene, the θx is set to 1
2π to make

the orientation of the camera outside. It needs to be noticed
that the specific parameters of two-view initialization may
be different for different scenes, which can be referred into
our codes and configuration after it is released.

D. Sphere Tracing and Depth Consistency

As mentioned in our paper, the key component for at-
taining the 3D points from the 2D keypoints is sphere trac-
ing. As shown in Figure. 5, sphere tracing algorithm [6]
leverages the basic property of the signed distance function
where the queried SDF value at each position is the closest
distance from the point to the zero-level set of the surface.
The depth of the queried 2d points can be calculated as fol-
lows:

t̂ = t0 +

max∑
j

sdf(Xj),

Xj+1 = Xj + sdf(Xj)d,

(7)

where the start point X0 = o + t0d. By the sphere tracing
algorithm, we can efficiently get the 3d points from 2d, and
it can be a natural constraint for the learning of SDF. But
sometimes, sphere tracing can not correctly trace the sur-
face when the zero-level set is correct while non-zero-level
sets are wrong. Therefore, it can not ensure the multi-view
consistency of the sphere tracing algorithm (seen in the sec-
ond row of Figure. 5). To overcome that, we use the depth
calculated by volumetric rendering as a constraint to keep
the consistency between these two sampling strategies as
mentioned in our paper.

Scene DTU [4]

Order 1st rot◦↓ 0.74
trans. (mm) ↓ 5.81

Order 2nd rot◦↓ 0.30
trans. (mm) ↓ 2.04

Table 2. Ablation for Sequence Order.

E. Sequence Order for Incremental Recon-
struction

For incremental SfM, the sequence order for incremen-
tal reconstruction is a relatively important component of the
final result. But this paper concentrates our attention into re-
new the SfM on the neural level sets, which show its promis-
ing future to make breakthroughs. To avoid being exhausted
to be stuck in the discussion of various tricks and strategies,
we simply implement the next best view selection accord-
ing to the number of 3D-2D pairs in PnP which may have
a better alternative discussed in [12]. In order completely
discuss our framework, we also report the simple ablation
result for the sequence order in Level-S2fM, which can be
seen in Table. 2. We conducted the ablation study for se-
quence order in DTU [4]. We report two different sequence
orders by randomly selecting the start of two frames for the
two-view initialization. We can see that different sequence
orders will cause different results. Despite of this, we would
like to emphasize again that because of the complexity of
Structure-from-Motion, the problem of the next-best view
is not the core of our current study, which will be left in our
future work.

F. More Qualitative Results on Individual
Datasets

We also report more qualitative results for our experi-
ments. In Figure. 7, there are the rendered image results
from our radiance field. While, in Figure. 6, the estimated
pose, reconstructed 3d points, and the mesh are visualized.

G. Discussion on Failure Cases
In our paper, we take the indoor datasets, ScanNet [1] to

discuss our failure cases, where there are a lot of texture-
less regions. As shown in Figure. 8, because of the tex-
tureless areas or the blurry problem of the captured images,
the 3D-2D correspondences are badly distributed and lim-
ited in number. Therefore, the registration of these images
is hard to solve and results in bad initialization for the pose
estimation. As seen in Figure. 4, the trajectory of cameras
becomes unsatisfactory due to the textureless wall. Mean-
while, due to the incremental reconstruction fashion, the
subsequent pose is based on the former, so, the incorrect
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Figure 6. Qualitative Results for Reconstruction and Pose Estimation. The first column is the refused mesh and the visualization of
camera poses. While, the second and third are the mesh and mesh shown with the points respectively. We can observe that our reconstructed
points sticking on the surface of mesh. In the last column is the point cloud reconstructed.

pose estimation results by the textureless region will influ-
ence the whole process. To alleviate the problem, the recent
robust deep learning-based 2d matches method may play a
core role [2, 11], which will be our future works to explore
the solution to this problem.

Meanwhile, for those NeRF [7] based SLAMs Frame-
work [14, 15], they usually need the depth as an extra in-
put. With the assistance of the depth map, the coarse pose
is easily attained by aligning the depth of two consecutive
frames, and they are not easily influenced by the issue of
textureless. Therefore, in our paper, we did not compare
our method with the depth-aware SLAM methods. Besides,
we find that the optimizer for the networks is another core
for getting stable and accurate pose results. The optimizer,
Adam [5], used in our paper is may not the best choice
for our problem as it is not easy to judge whether the op-
timization is converged. Therefore, in our future work, we
are going to explore using the second-order optimizer like
Levenberg-Marquardt (LM) [8] or Gauss-Newton (GN) [3]
algorithm to solve our problem.
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Figure 7. Qualitative Results for Rendering.This figure show the visualization of three scenes. At each group, the first row is the ground
truth rgb images and their corresponded 3d observation projected on them. And the second row is the rendered images.
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Figure 8. Visualization for Images with Its 3D observations for PnP in Scannet.This figure show that because of the blurry problem
and textureless region, the 3D-2D correspondences are badly distributed and limited number.
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