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A. Experiment Details

A.1. Training Routines

For fine-tuning on ImageNet via vanilla fine-tuning or
our approach, we use the AdamW optimizer [8] with β1 =
0.9, β2 = 0.999, weight decay of 0.1 and gradient clipping
at ℓ2-norm 1. We use a batch size of 512, and fine-tune for
10 epochs. The learning rate is set to 3 × 10−5 for all pa-
rameters and follows a cosine-annealing schedule [7] with
500 warm-up steps. For both training and testing, we resize
and center-crop the images to the size of 224 × 224, and
no data augmentation is applied. Besides, different from
WiSE-FT [16], we do not use label smoothing.

A.2. Validation of CAM-based Object Masking

In Sec. 4.2, to verify that our CAM-based object mask-
ing can effectively mask the patches that cover the main
object, we report the average object masking rate and IoU
during training with different CAM score thresholds. Since
we do not have the ground truth of the masks of main ob-
jects for ImageNet, we approximate it by the prediction
of Mask2Former [2], a segmentation model pre-trained on
COCO [6] (the specific model is reported in Appendix B).
We select three super-classes defined in Restricted Ima-
geNet [13] that can be recognized by the segmentation
model, i.e., Dog, Cat and Bird, which cover 144 ImageNet
classes in total. For each training image of these classes, we
obtain the pixel-level segmentation mask Mseg correspond-
ing to the super-class, and compare it with our patch-level
CAM-based mask, which is translated to a pixel-level mask
MCAM according to the correspondence between patches
and pixels.

The metrics in Tab. 2 in the main text are defined as fol-
lows. Formally, a mask M of an image I is defined as a
subset of the pixels. Let n(·) denote the number of pixels in
a mask or an image. Then, the metrics are defined as:
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• Image masking rate:
n(MCAM)

n(I)
;

• Object masking rate:
n(MCAM ∩Mseg)

n(Mseg)
;

• IoU:
n(MCAM ∩Mseg)

n(MCAM ∪Mseg)
.

A.3. WiSE-KD

In Sec. 4.4, we consider using the WiSE-FT [16] model
as a teacher model, and add the vanilla knowledge distilla-
tion loss [5] to our training objective, i.e.,

L = LCE(g(f(x)), y) + γLKL(g(f(x)), ge(fe(x)))

+βLMSE(f̂(xcf ), f(xcf )),
(1)

where LKL is the Kullback-Leibler divergence loss, and fe
and ge are the encoder and classification head of the ensem-
ble model produced by WiSE-FT, correspondingly. We set
γ = 1, and use the WiSE-FT model with α = 0.5. The
temperature of the vanilla knowledge distillation is 10.

B. Use of Existing Assets
Datasets. In this paper, we utilize the following existing
benchmark datasets without modification or repackaging:

• ImageNet [12] (https://www.image- net.
org/)

• ImageNet-V2 [11] (https : / / github . com /
modestyachts/ImageNetV2)

• ImageNet-R [3] (https : / / github . com /
hendrycks/imagenet-r)

• ImageNet-Sketch [14] (https://github.com/
HaohanWang/ImageNet-Sketch)

• ObjectNet [1] (https://objectnet.dev/)
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• ImageNet-A [4] (https : / / github . com /
hendrycks/natural-adv-examples)

In our experiments, we select the hyper-parameters based
on validation accuracy on ImageNet, and use the other
datasets solely for robustness evaluation. For ObjectNet,
we follow the official guidance to remove the red borders of
the images before other preprocessing steps in evaluation.

Code and pre-trained model weights. The experiments
in this paper are based on the code and pre-trained model
weights provided by the following packages or GitHub
repositories:

• PyTorch [9] (https://github.com/pytorch/
pytorch)

• CLIP [10] (https://github.com/openai/
CLIP)

• WiSE-FT [16] (https : / / github . com /
mlfoundations/wise-ft)

• Model Soup [15] (https : / / github . com /
mlfoundations/model-soups/issues/1):
we use the pre-trained weights of uniform soup pro-
vided by the authors in an issue.

• Mask2Former [2] (https : / / github . com /
facebookresearch / Mask2Former / blob /
main/MODEL_ZOO.md): we use the pre-trained
model with ID 48558700_7.
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