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In this supplementary material, we first analyze the ef-

fect of iteration number for the optimization of ActiveFT in

Sec. A. Then, we provide more implementation details in

Sec. B, including some explanation of N/A results in Tab. 1

of our main paper. Finally, we give a formal proof of the

optimal joint distribution in Eq. 15 of our main paper in

Sec. C.

A. Ablation Study on Iteration Number
We conduct an additional ablation study of the maximal

iteration number T (in Alg. 1 of the main paper) of the para-

metric model optimization process in ActiveFT. The exper-

iments are conducted on ImageNet [7] with sampling ratio

1%. Results are demonstrated in Tab. 1. The quality of

samples selected by ActiveFT continuously improves in the

early stage as the optimization of our parametric model pθS
goes, and then converges in the late stage. This result veri-

fies that our model optimization gradually brings close the

distributions of our selected samples to the entire unlabeled

pool as well as ensures the diversity of the selected subset

in the whole optimization process.

Table 1. Ablation Study of Iteration Numbers: Experiments are

conducted on ImageNet [7] dataset (1% sampling ratio) with DeiT-

Small [11] model pretrained with DINO [1] framework. When

iteration number is 0, it is same as random selection.

Sel. Ratio Iteration Number
0 50 75 100 200 300

1% 45.1 46.7 48.4 50.2 50.1 50.1

B. Additional Implementation Details
B.1. Unsupervised Pretraining Details

In our main paper, the DeiT-Small model (path size

16x16) [11] is pretrained on ImageNet [7] with DINO

framework 1 [1] for 300 epochs using AdamW optimizer [5]

1https://github.com/facebookresearch/dino

and batch size 1024. The learning rate is linearly ramped

up to 5e-4×batch size/256 in the first 10 epochs and decays

with a cosine scheduler later.

In Tab. 4 of our main paper, the DeiT-Small model [11]

is pretrained with iBOT framework2 [13] on ImageNet [7]

for 800 epochs. The ResNet-50 model [2] is pretrained

with DINO framework [1] on ImageNet for 300 epochs.

The optimizer is AdamW [5] and the batch size is 1024

in both cases. The learning rate is linearly ramped up to

5e-4×batch size/256 in the first 10 epochs too.

B.2. Supervised Finetuning Details

We typically follow the protocols in [11] to finetune

the DeiT-Small model. For CIFAR10 and CIFAR100 [4]

datasets, the pretrained models are supervisedly finetuned

for 1000 epochs using SGD optimizer (lr=1e-3, weight-

decay=1e-4, momentum=0.9) with batch size 512 and co-

sine learning rate decay on selected subsets of training data.

For ImageNet [7] dataset, to ensure convergence, the mod-

els are finetuned for 1000 epochs when the sampling ratio

is 1% and for 300 epochs when the sampling ratio is 5%,

using the same SGD optimizer as CIFAR. The images are

resized to 224x224 in line with the pretraining. The super-

vised finetuning is implemented based on the official code

of DeiT 3. For ResNet-50 model in Tab. 4 of our main paper,

we use the code base of mmclassification 4. We follow their

settings to finetune the model with SGD optimizer (lr=1e-

2, weight-decay=1e-4, momentum=0.9) with batch size 512

and cosine learning rate decay on selected subsets of train-

ing data for 100 epochs.

On the semantic segmentation task, we follow [10] to

train the model for 127 epochs (i.e. 16k and 32k iterations

on 5% and 10% of training data). The model is trained us-

ing SGD optimizer (lr=1e-3, momentum=0.9) with batch

size 8 and polynomial learning rate decay. The code base is

mmsegmentation 5.

2https://github.com/bytedance/ibot
3https://github.com/facebookresearch/deit
4https://github.com/open-mmlab/mmclassification
5https://github.com/open-mmlab/mmsegmentation
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B.3. Active Learning Transplantation Details

We transplant three classical active learning methods

and two newer algorithms to the pretraining-finetuning

paradigm, including CoreSet [8], VAAL [9], LearnLoss

[12], TA-VAAL [3], and ALFA-Mix [6].

For all five methods, we apply them to image classifi-

cation task on CIFAR10, CIFAR100 and ImageNet. These

methods select data samples with batch-selection strategy.

Firstly, we train the model on a randomly sampled initial

set. Then, the model is used to select a batch of images

from the training set, and the model is re-trained on all the

selected samples. This process repeats until the annotation

budget is filled. In the pretraining-finetuning paradigm, for

CoreSet, LearnLoss and ALFA-Mix, we use DeiT-Small

[11] pretrained with DINO [1] as the backbone of their

models for data selection. For VAAL and TA-VAAL, we di-

rectly use their original light-weighted VAE to select data.

When the data samples have been selected with different

sampling ratios, we finetune the DeiT-Small model in the

same manner as Sec. B.2 on the selected data samples. The

sizes of the initial set and each selection batch are set as

0.5% on CIFAR10, 1% on CIFAR100, and 2.5% on Ima-

geNet separately for all the five algorithms.

B.4. Explanation of N/A Results

There are some N/A results (denoted by “-”) in Tab. 1 of

our main paper. We explain them from the following three

angles.

• Initial Set of Active Learning: As described in

Sec. B.3, all five active learning methods require to

randomly sample a small initial set in the begin-

ning. On this initial set, the performance of these ac-

tive learning algorithms is same as random sampling.

Therefore, we pass the duplicate results on these ran-

dom initial sets i.e. 0.5% of CIFAR10 and 1% of CI-

FAR100. Since 1% is smaller than the initial set size

(2.5%) on ImageNet, we pass this sampling ratio as

well.

• K-Means on ImageNet: Given the large number of

images in training set, it is hard to implement K-Means

to ImageNet dataset, which exceeds the capability of

our hardware. Since K-Means does not perform well

on CIFAR10 and CIFAR100, the N/A results on Ima-

geNet would not affect our conclusions.

C. Proof of the Optimal Distributions for Earth
Mover’s Distance

In Sec. 3.4 of our main paper, we give an optimal dis-

tribution to calculate the earth mover’s distance (EMD), i.e.
each fi ∼ pfu transports to their closest fsj ∼ pfS . The

Eq. 15 in the main paper is copied as follows:

γfu,fS (fi, fsj ) =

{
1
N fi ∈ Fu, fsj ∈ Fu

S , ci = j

0 otherwise
(1)

We will prove it is the optimal joint distribution γ to

reach the infimum in Eq. 14 of our main paper, copied as

follows:

EMD(pfu , pfS ) = inf
γ∈Π(pfu ,pfS

)

E
(fi,fsj )∼γ

[||fi − fsj ||2
]
(2)

Suppose there is a general format:

γfu,fS (fi, fsj ) = p(fi, fsj ) fi ∈ Fu, fsj ∈ Fu
S (3)

Because of the uniform distribution of pfu , p(fi, fsj ) sat-

isfies the following constraints.

p(fi, fsj ) ≥ 0,
∑

fsj∈Fu
S

p(fi, fsj ) = pfu(fi) =
1

N
. (4)

The distance expectation for each feature fi with the dis-

tribution Fu is

E
fsj∈Fu

S

[||fi − fsj ||2
]
=

∑
fsj∈Fu

S

[
p(fsj |fi) · ||fi − fsj ||2

]

=
∑

fsj∈Fu
S

[
p(fi, fsj )/pfu(fi) · ||fi − fsj ||2

]

=N
∑

fsj∈Fu
S

[
p(fi, fsj ) · ||fi − fsj ||2

]
(5)

Since the fsci is the nearest feature of fi in fsj ∼ Fu
S , we

can have the inequality

||fi − fsj ||2 ≥ ||fi − fsci ||2 (6)

so

E
fsj∈Fu

S

[||fi − fsj ||2
] ≥N ·

⎡
⎣ ∑
fsj∈Fu

S

p(fi, fsj )

⎤
⎦ · ||fi − fsci ||2

=N · 1

N
||fi − fsci ||2

=||fi − fsci ||2
(7)

The above minimum is reached when Eq. 1 (Eq. 15 in our

main paper) is satisfied. Therefore, for each fi, we only

need to find the nearest feature fsci among fsj ∼ Fu
S and

assign the joint probability as 1
N .
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