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1. 2D Image Fitting
1.1. Comparisons of Learned INRs

Fig. 1 shows comparisons of learned INRs in the DINER with MLP and SIREN backbones on more 2D images.

1.2. Comparisons with the SOTAs

Fig. 2 provides more qualitative results on the image fitting task. All 5 methods (DINER with MLP and SIREN backbones,
and [3–5]) share the same network size as described in the manuscript.

2. Neural Representation for 3D video
Fig. 3 shows comparisons of the neural video representation task on the ‘ShakeNDry’ data.

3. Lensless Imaging Experiments
We provide the comparison on reconstructed amplitude and phase images of animal skin section [7] by DINER, DNF [8]

and PhysenNet [6]. Fig. 4 provides qualitative comparisons. The proposed DINER could provide more clear images than
DNF and PhysenNet. Fig. 5 shows the PSNR of reconstructed measurements over training time. The proposed DINER has
100× advantages on the convergence speed over the PhysenNet and DNF, respectively.

4. Comparisons of Refractive Index recovery
Please refer the attached video for visual comparison.

5. Comparisons of Novel View Synthesis
After the CVPR submission, we additionally applied the DINER to the novel view synthesis (NVS). We use the harmonic

coefficients representations [1] to convert the continuous radiance field signal to a discrete signal. As a result, the problem
of interpolating hash-key is avoided. We compare the DINER-based NVS with the NeRF [2] and the Plenoxels [1] (Fig. 6).
The proposed DINER outperforms them.
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Figure 1. Comparisons of learned INRs in the DINER with MLP and SIREN backbones, respectively.
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Figure 2. Comparisons of various methods on 2D image fitting after 3000 epochs.
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Figure 3. Qualitative comparisons of various methods on video representation after 500 epochs using the ‘ShakeNDry’ data.
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Figure 4. Comparisons on reconstructed complex field of animal skin section.
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Figure 5. PSNR of reconstructed measurements of over training time on lensless imaging.
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Figure 6. Results on novel view synthesis using A100 card.


	. 2D Image Fitting
	. Comparisons of Learned INRs
	. Comparisons with the SOTAs

	. Neural Representation for 3D video
	. Lensless Imaging Experiments
	. Comparisons of Refractive Index recovery
	. Comparisons of Novel View Synthesis

