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A. Implementation details

A.1. Optimization settings

We utilize a pretrained EG3D model trained on the
FFHQ [5] dataset for optimization. The model utilizes the
triplane with 256 resolution and generates 3D-aware photo-
realistic images at 512 resolution.

Regarding the camera pose, we utilize a readily avail-
able face reconstruction network [3] to obtain p0, as per the
method described in [1]. Prior to utilizing [3], we need to
align the input image with the pose distribution of the pre-
trained EG3D, as illustrated in Figure 1. The code for pose
estimation can be found in our Github repository.

For the initial visibility estimation stage, we train our
model with a learning rate of 5e-3 and 1000 iterations. The
optimization process included 500 iterations for the latent
code optimization in the W+ space and 500 iterations for
generator fine-tuning, We update all learnable parameters
in the EG3D generator to obtain the tuned model. However,
the mesh obtained directly from EG3D has misalignment
with the input image. Therefore, we reconstruct the mesh
from the depth rendered from the same view as the input
image. After obtaining the mesh, we calculate the visibility
for each vertex by utilizing the z-buffer of the rasterization
algorithm to determine whether other mesh faces occluded
this vertex. Then, we warp the texture of the input image
to visible vertices and rasterize the mesh to obtain novel
view masks Mv and visible textures Vi, thereby complet-
ing the visible part reconstruction. For the occluded part,
we use the generator to generate it. To blend the visible
and occluded parts, we experimented with two methods to
blur the boundary: directly applying a Gaussian kernel with
a radius of 10 or using Poisson blending. We generated
pseudo-multi-views by blending visible and occluded parts
with the smoothed boundary. Finally, for the optimization
stage, we set the learning rate at 3e-4 and the training itera-
tion at 3000 using the synthesized pseudo-multi-views and
input image.
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Figure 1. Visualization of input image alignment.

A.2. Image attribute editing

For image attribute editing, we follow the pipeline pro-
posed in [7] to calculate the latent direction. We first gen-
erate 500,000 images with the canonical view. We then pre-
dict the attributes of the synthesized images and rank them
by scores. We use the 10,000 samples with the highest and
10,000 with the lowest scores. We then randomly use 70%
of them for training a linear SVM and 30% for testing the
accuracy of the trained classifier. We calculate the attribute
direction with the trained SVM.

B. Analysis
B.1. More quantitative evaluation metrics

B.1.1 IBRNet

We utilized the 3D consistency evaluation setting intro-
duced in [4], employing the pretrained IBRNet [9] model
to predict the input view from five synthesized novel views.
The five views were carefully selected by choosing the
canonical view and the four edge views on the sphere cam-
era trajectory within a yaw range of [-0.35, 0.35] rad and a
pitch range of [-0.25, 0.25] rad. Our main paper presents
the PSNR metric that evaluates the difference between the
ground truth images and the reconstructed images generated
by IBRNet. Additionally, we include the SSIM and lpips
metrics in Table 1, demonstrating that our proposed method
surpasses other baseline models.

B.1.2 Pose accuracy

We adopt the pose accuracy metric from [1]. With the face
reconstruction model [3], we randomly select one novel
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view for every CelebA-HQ test image and estimate the pose
for the novel view outputs of all the methods. We compute
the L2 loss between the estimated pose and the GT pose that
is used to render the novel view. From table 1, we find that
the rendered novel view images of all three methods keep
good pose consistency with the GT pose, the error is mi-
nor, and the margin between different methods is extremely
small.

B.1.3 Identity

An intuitive criterion for judging the 3D-aware GAN inver-
sion is whether it keeps the identity of the input person in
novel views. We have evaluated the criterion with a user
study in the main paper, asking people which video keeps
the best identity of the input image. We also provide quanti-
tative metrics. We randomly select one novel view for every
CelebA-HQ test image and compute the mean Arcface [2]
cosine similarity between rendered novel view images and
input images. The comparison is shown in table 1. Our ID
loss exceeds other baselines by a large margin.

B.2. Texture-geometry trade-off

As analyzed in Figure 2 of the main paper, the quality of
the synthesized view severely decreases as the optimization
iteration increases. We also provide quantitative metrics as
shown in Figure 2. We calculate the 3D consistency metric
using the IBRNet [9] for every 500 optimization steps. As
the PSNR of the reconstruction increases, the 3D consis-
tency metrics, on the contrary, decreases. The quantitative
metrics also indicate a degradation in novel view quality as
the optimization process continues, which matches the find-
ings in our qualitative analysis.

C. Additional visual results

We provide more visual results, including the failure
cases and the qualitative comparison with baselines.

C.1. Failure cases

In Figure 3, we demonstrate two failure cases for our
approach. The first source image contains hands, and the
estimated geometry is incorrect. We can see obvious blurry
regions in the synthesized novel views. The second case
contains the out-of-distribution pose with trinkets. The gen-
erated face suffers from slight distortion, and the trinkets’
shape is incorrect.

C.2. Qualitative comparison

More qualitative comparison are shown in Figure. 5, Fig-
ure. 6 and Figure. 7.
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Figure 2. As the reconstruction quality increases with the opti-
mization iteration, the 3D consistency on the contrary decreases.

Input image Novel view 1 Novel view 2

Figure 3. Failure cases.

Method PSNR↑ SSIM↑ Lpips↓ Pose ↓ ID ↑

PTI [6] 21.20 0.697 0.457 0.04178 0.657
IDE-3D [8] 20.69 0.676 0.462 0.04152 0.671
Ours 21.69 0.734 0.429 0.04179 0.744

Table 1. More quantitative evaluation metric on 3D consistency.

D. Alternative choices

An alternative regularization strategy to improve the ge-
ometry is to add regularization on density while the recon-
struction loss is still calculated on the single input. With
an initially estimated geometry, we can regularize the den-
sity during the training. We add an additional loss which
requires the density of the current output is similar to the
correct geometry. However, although it helps to keep the
geometry, the synthesized novel view contains blurry de-
tails. As in Figure 4, compared to density regularization,
our pseudo-multi-view generates clearer details and keeps
higher fidelity. The possible reason is that the single in-



→ ——————— Reconstruction Quality ——————– →

Input Image

Ours
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Figure 4. Reconstruction quality vs. novel view quality during the optimization process using density regularization. Although the
geometry of the synthesized novel view will not distort like in Figure 2 in the main paper, the generated textures contain visually-unpleasant
noisy details compared to our results. Zoom for details

put as supervision contains not enough information for con-
structing photo-realistic details. The pseudo-multi-view can
better solve the ambiguity.
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Input image PTI [6] IDE-3D [8] Ours

Figure 5. More qualitative comparison with baselines.
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Input image PTI [6] IDE-3D [8] Ours

Figure 6. More qualitative comparison with baselines.
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Input image PTI [6] IDE-3D [8] Ours

Figure 7. More qualitative comparison with baselines.
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