
MAESTER: Masked Autoencoder Guided Segmentation at Pixel Resolution for
Accurate, Self-Supervised Subcellular Structure Recognition

Supplemental Material

Ronald Xie1,2,3,4,*,† Kuan Pang1,4,* Gary D. Bader1,3,4,‡ Bo Wang1,2,3,‡

1University of Toronto, 2Vector Institute, 3University Health Network, 4The Donnelly Centre

{ronald.xie, kuan.pang, gary.bader}@mail.utoronto.ca , bowang@vectorinstitute.ai

A. Implementation Details
A.1. Self-supervised Segmentation Experiments

We use a ViT encoder [1] to learn semantically infor-
mative patch level representations. We present the default
training settings in Table S1. Different from other image
segmentation tasks, volume electron microscopy (VEM)
datasets are stored as 3-D arrays which requires sampling 2-
D images from the volume, and thereby conventional epoch
measure does not apply. For each reconstruction task, we
sample 5.6M images at the size of FOV from the dataset
with random flip and random crop data augmentations.

Our ViT encoder and decoder implementations are based
on modified ViT-B architecture. Modifications include de-
creasing embedding dimension to overcome practical limita-
tions of storage while maintaining sufficient expressivity of
learned patch representations. We also adjusted the number
of layers to enable asymmetric encoder and decoder design.
Positional embeddings are added in both encoder and de-
coder. In encoder, the positional embeddings are weighted
to avoid the positional bias in the clustering.

A.2. Supervised Segmentation Experiments

We evaluate our method against two strong supervised
baselines, Segmenter [3] and Vanilla ViT [1]. Segmenter
is a ViT backboned model for semantic segmentation, it
consists of a ViT encoder for processing feature extraction
and a Mask Transformer for matching embeddings with
classes and mapping the embedding to pixel classification.
Vanilla ViT baseline uses a vanilla ViT encoder for feature
extraction and a vanilla ViT decoder for mapping embed-
dings to segmentation map. Both baselines are configured
to have same or similar architecture to our default setting in
self-supervised experiment. We expect these approaches to
illustrate ViT’s capability in achieving pixel-precision perfor-
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config value
optimizer AdamW
base learning rate 1.5e-4
weight decay 1.0e-5
optimizer momentum β1, β2=0.9, 0.0.999
batch size 32
training samples 5.6M
augmentation RandFlip, RandCrop

Table S1. Default training settings for self-supervised experiments.

config value
optimizer AdamW
base learning rate 1.5e-4
weight decay 1.0e-5
optimizer momentum β1, β2=0.9, 0.0.999
batch size 64
training samples 5.6M
augmentation RandFlip, RandCrop
loss function Cross Entropy Loss

Table S2. Default training settings for supervised experiments.

config ViT
encoder

Mask Transformer
decoder

embedding dimension 192 128
transformer layer 14 7
attention head 1 8
MLP ratio 2.0 2.0
positional embedding
weight

1.0 1.0

Table S3. Segmenter [3] architecture for supervised experiments.

mance with supervised signal. We report the training settings
for supervised baseline in Table S2, and model specific set-
tings in Table S3 and Table S4. Since each cell in the dataset
is partially labeled, we disable the loss calculation on the
unlabeled regions.
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config ViT
encoder

ViT decoder

embedding dimension 192 128
transformer layer 14 7
attention head 1 8
MLP ratio 2.0 2.0
positional embedding
weight

1.0 1.0

Table S4. Vanilla ViT [1] architecture for supervised experiments.

B. Supplementary Figures
To achieve pixel resolution segmentation of the entire be-

taSeg testing dataset, we generated over 600 million patches
and associated learnt token representations. To compute k-
mean centers for label assignment, we randomly sample 500
thousand, or around 0.08% of the total number of patches
for practicality. We then further subset 50 thousand token
representations for visualization via UMAP [2]. The UMAP
was colored based on the reference segmentation and the
matching predicted classes from the result of k-means clus-
tering Figure S1. As shown, we see clear semantic separation
of putative classes generated by k-means clustering, in con-
cordance with the reference segmentation. We also present
a confusion matrix Figure S2 showing the robustness and
accuracy of our generated segmentation.

3D renderings of our generated segmentation are shown
in Figure S3 and Figure S4. Precise segmentation enables
cell biologist to quickly gain an holistic overview of cells of
interest and facilitate downstream analysis on the segmented
subcellular structures.



Figure S1. UMAP [2] visualizations of 50, 000 randomly selected token representations generated by the trained encoder, demonstrating
clear semantic separation of the putative classes. (a) Color coded based on ground truth segmentation classes. (b) Color coded based on our
predicted classes.

Figure S2. Confusion matrix showing k = 6 (with one class
merged), (a) is normalized by column and (b) is normalized by
row.



Figure S3. 3D-renderings of an overview for our segmentation result on testing cell, allowing biologists to quickly identify the cell
ultrastructures.

Figure S4. 3D-renderings of our segmentation result on testing cell with 1/4 granules hidden for subcellular structure demonstration.
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