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A. Hyper-parameters and training details

We illustrate the training details of pre-training and fine-
tuning for different tasks and different models. Table 1
presents pre-training details. Table 2 presents the fine-
tuning details on ImageNet-1K image classification. Table 3
presents the fine-tuning details on iNaturalist 2018. Table 4
presents the fine-tuning details on COCO dataset. Table 5
presents the fine-tuning details on ADE20K dataset.

Pre-training setting of all models
Input size 1922

Window size 12
Patch size 4

Mask patch size 32
Mask ratio 0.6

Training iterations 125,000 / 250,000 / 500,000
Batch size 2048
Optimizer AdamW

Init. learning rate 4e-4
Weight decay 0.05

Adam ϵ 1e-8
Adam β (0.9, 0.999)

Learning rate scheduler Step
Step learning rate ratio 0.1

Step iterations 109,375 / 218,750 / 437,500
Warm-up iterations 6250
Gradient clipping 5.0
Stochastic depth 0.1
Rand crop scale [0.67, 1]
Rand resize ratio [3/4, 4/3]

Rand horizontal flip 0.5
Reconstruction target Norm. with sliding window [1]

Norm. patch size 47

Table 1. Details and hyper-parameters for SimMIM pre-training.
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Hyperparameters SwinV2
S / B / L H / g

Input size 2242

Window size 14
Patch size 4

Training epochs 100 50
Warm-up epochs 20 10

Layer decay 0.8 / 0.75 / 0.7 0.65
Batch size 2048
Optimizer AdamW

Base learning rate 5e-3
Weight decay 0.05

Adam ϵ 1e-8
Adam β (0.9, 0.999)

Learning rate scheduler cosine
Gradient clipping 5.0
Stochastic depth 0.2
Label smoothing 0.1
Rand crop scale [0.08, 1]
Rand resize ratio [3/4, 4/3]

Rand horizontal flip 0.5
Color jitter 0.4

Rand augment 9 / 0.5
Rand erasing prob. 0.25

Mixup prob. 0.8
Cutmix prob. 1.0

Table 2. Details and hyper-parameters for ImageNet-1K fine-
tuning.

B. Training dynamics of masked image model-
ing

We show the training curves and validation curves of
different models trained by masked image modeling to bet-
ter illustrate the training dynamics. In Figure 2, each row
presents the training and validation loss curves for training
with the same model but different dataset. The training loss
is computed on its corresponding training dataset and the
validation loss is computed on the ImageNet-1K validation
set. We make the following observations: First, all models



Hyperparameters SwinV2
Small(S) Base(B) Large(L)

Input size 2242

Window size 14
Patch size 4

Training epochs 100
Warm-up epochs 20

Layer decay 0.8 0.75 0.7
Batch size 2048
Optimizer AdamW

Base learning rate 1.6e-2
Weight decay 0.1

Adam ϵ 1e-8
Adam β (0.9, 0.999)

Learning rate scheduler cosine
Gradient clipping 5.0
Stochastic depth 0.2
Label smoothing 0.1
Rand crop scale [0.08, 1]
Rand resize ratio [3/4, 4/3]

Rand horizontal flip 0.5
Color jitter 0.4

Rand augment 9 / 0.5
Rand erasing prob. 0.25

Mixup prob. 0.8
Cutmix prob. 1.0

Table 3. Details and hyper-parameters for iNaturalist 2018 fine-
tuning.

Hyperparameters SwinV2
Small(S) Base(B) Large(L)

Detector Mask R-CNN
Window size 14

Patch size 4
Training input size (1024, 1024)
Testing input size (800, 1333)
Training epochs 36

Warm-up iterations 500
Batch size 32
Optimizer AdamW

Base learning rate 8e-5
Weight decay 0.05

Adam ϵ 1e-8
Adam β (0.9, 0.999)

Learning rate scheduler Step
Step learning rate ratio 0.1

Step epochs (27, 33)
Stochastic depth 0.1 0.1 0.2

Rand horizontal flip 0.5
Scale Jittering [0.1, 2.0]

Table 4. Details and hyper-parameters for fine-tuning on the COCO
dataset.

Hyperparameters SwinV2
Small(S) Base(B) Large(L)

Architecture UPerNet
Window size 20

Patch size 4
Training input size (640, 640)

Test input size (640, 2560)
Slide test stride (426, 426)

Training iterations 80,000
Warm-up iterations 750

Layer decay 0.95 0.95 0.9
Batch size 32
Optimizer AdamW

Base learning rate [1e-4, 3e-4]
Weight decay 0.05

Adam ϵ 1e-8
Adam β (0.9, 0.999)

Learning rate scheduler Linear
Stochastic depth 0.1

Rand horizontal flip 0.5
Scaling Jittering [0.5, 2.0]

Photo Metric Distortion ✓

Table 5. Details and hyper-parameters for fine-tuning on the
ADE20K dataset.

have the overfitting issues when using small datasets. Sec-
ond, for the non-overfitting cases, the training and validation
losses are similar using different sizes of datasets for training.
In Figure 3, the training/validation loss curves of different
models but using the same training dataset are presented at
each row. We make the following observations: First, larger
models have lower training losses than smaller models for
all datasets. Second, the validation loss of the larger model
is lower than the smaller model in the non-overfitting cases
but higher than the smaller model in the over-fitting cases.

C. Visualization

To better understand the difference between overfitting
and non-overfitting models, we visualize the reconstruction
results of SwinV2-L that pre-trained on ImageNet1K(10%)
and ImageNet1K(100%). Figure. 4 shows the reconstruc-
tion results on the training images from ImageNet1K(10%)
dataset that are jointly contained by the two models, and
Figure. 5 shows the reconstruction results on the validation
images from ImageNet-1K validation set. Based on the re-
construction results on the training images, we observed
the overfitting model (i.e. SwinV2-L pre-trained on Ima-
geNet1K(10%)) is more like to "remembering" the masked
regions, while the non-overfitting model (i.e. SwinV2-L
pre-trained on ImageNet1K(100%)) is more like "reasoning"
the masked regions. For example, the results on the left of
the first row in Figure. 4 shows that the overfitting model



Figure 1. The curves of Top-1 accuracy on ImageNet-A, ImageNet-R and ImageNet-Sketch of different model sizes, data sizes and training
lengths, w.r.t. the relative training cost. We set the training cost of SwinV2-S for 125K iterations as the value of 1. Bigger circles indicate
larger models. Best viewed in color.

"successfully" completes the black hair of the dog, while the
non-overfitting model complete the same region in white,
since it is a white dog based on the seen regions. In addition,
we further observed that the overfitting model appears to
lack the "reasoning" ability and overall poorer quality on the
validated images compared to the non-overfitting model. For
example, the results on the left of the first row in Figure. 5
shows the overfitting model failed to completed the eyes of
dog.

D. Cross-Domain Transfer and Robustness
Check

To further validate the transfer ability and robustness
of different models for different image domains, we con-
duct more experiments on ImageNet-A [3], ImageNet-R [2]
and ImageNet-Sketch [4]. We used models fine-tuned on
ImageNet-1K and validate them directly on these datasets.
The results shown in Figure. 1 indicates that our conclusions
are consistent across different image domains.
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Figure 2. Each row presents the training and the validation loss curves for training with the same model (e.g., SwinV2 giant at the last
row) but different datasets. The training loss is computed on its corresponding training dataset, and the validation loss is computed on the
ImageNet-1K validation set. Best viewed in color.



Figure 3. Each row presents the training and the validation loss curves for training with the same dataset (e.g., ImageNet22K at the last
row) but different models. The training loss is computed on its corresponding training dataset, and the validation loss is computed on the
ImageNet-1K validation set. Best viewed in color.



Figure 4. We visualize the reconstruction results of overfitting model (SwinV2-L pre-trained on ImageNet-1K(10%)) and non-overfitting
model (SwinV2-L pre-trained on ImageNet-1K(100%)) on the training images from ImageNet-1K(10%) dataset, which are jointly contained
by the training set of two models. Each group contains 4 images from left to right are: the original image, the corrupted images, reconstructed
image of overfitting model, and reconstructed image of non-overfitting model.

Figure 5. We visualize the reconstruction results of overfitting model (SwinV2-L pre-trained on ImageNet-1K(10%)) and non-overfitting
model (SwinV2-L pre-trained on ImageNet-1K(100%)) on the validation images from ImageNet-1K validation set. Each group contains 4
images from left to right are: the original image, the corrupted images, reconstructed image of overfitting model, and reconstructed image of
non-overfitting model.


