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A. The visualization of task prioritization

In this part, we give the visualization of task prioritiza-
tion when Poly-PC jointly optimizes three tasks in the main
paper: 3D point shape classification, segmentation, and ob-
ject detection. As shown in Fig. 1, the task prioritization of
such three tasks adjusts dynamically and tends to converge
with the progress of iteration. The task prioritization can
enable our proposed gradient balance algorithm to priori-
tize the learning of difficult task at each epoch and ensures
that all tasks converge to the optimal solution.
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Figure 1. Illustration of task prioritization trend.

B. Search space of Poly-PC (large)

We design a large search space that includes five vari-
able factors in Res-SA building layers: neighbour points,
group radius, Res-MLP layer numbers in ®,,,;¢ and ®,,4,
reduction rate €1 in ®,,;4, expansion rate €z in ®,,4, and
output channel number in Res-SA layer. We also search the
channel of stem MLP. We make the layer numbers of ®,,,;4
and ®,,,; equal to reduce the whole search space. Note that
each task has its own search space. We give the search space
of Poly-PC (base) in Tab. 1 and Poly-PC (large) in Tab. 2.
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C. Search pipline
C.1. Supernet training

During supernet training, Poly-PC simultaneously learns
K different tasks, that is, finding K mappings from K dif-
ferent datasets {1} to a task-specific set of labels {y},
k = 1,2,..., K. Note that since each task has its own
dataset domain, we need to use multiple GPUs to optimize
the tasks, where the task-shared parameters are optimized
in the global group while the task-specific parameters are
optimized in the task-specific group, which is implemented
by defining multiple communication groups in Distributed-
DataParallel of PyTorch. Specifically, in each training it-
eration, we first randomly sample one architecture «y, for
task k. Then we retrieve its weights Wj, from the supernet’s
weights and compute loss based on the sampled subnet,
where the intersected parts of K tasks are considered task-
shared weights and the others are viewed as task-specific
weights. At last, we update the task-shared weights in the
global group and the task-specific weights in task-specific
group. In such process, no gradient or weight update acts
on unsampled parameters in the supernet. We train Poly-
PC for 50k iterations total with 24 Tesla V100 GPUs, that is,
classification, segmentation and detection takes up 8 GPUs
respectively. We view each 200 iterations as an epoch.

Implementation of parameter sharing. We can obtain
the gradient vector g7, g5, gchard, 95 that are distributed on
different GPUs from Eq. (9) in the main paper. Then, we
get the final gradient vector of the shared parameters g, by
All-Reduce operation (PyTorch) across all GPUs (also Eq.
(10) in the main paper). In this way, the gradient vectors of
shared parameters on all GPUs is g, . If we ensure that the
initialization of parameters, learning rate and weight decay
for each task are the same, we can finally get task-shared
parameters for all tasks, even in a single layer, we can still
obtain the partially shared and unshared parameters. For
task-specific parameters, we update the parameters directly



‘ Stem Channel ‘ Neigh Num ‘ Group Radius ‘ Res-MLP Num ‘ Output Channel ‘ Expansion rate ‘ Reduction rate

cls | (64,72,80) | (32,40,48) | (0.09,0.1,0.11) ©, 1) (128, 136, 144) @,5) (0.5,0.75)
stagel det | (64,72,80) | (56,64,72) | (0.18,0.2,0.22) ©,1) (128, 136, 144) @,5) (0.5,0.75)
seg | (32,40,48) | (40,44, 48) | (0.09,0.1,0.11) ©,1) (64, 72, 80) ,5) (0.5,0.75)
cls (32, 40,48) | (0.18, 0.2, 0.22) ©, 1) (256, 272, 288) @,5) (0.5,0.75)
stage2  det - (28,32,36) | (0.36,0.4,0.44) 0, 1) (256, 272, 288) @,5) (0.5,0.75)
seg (40, 44, 48) | (0.18,0.2,0.22) ©,1) (128, 136, 144) @,5) (0.5,0.75)
cls (32,40, 48) | (0.36,0.4, 0.44) ©,1) (256, 272, 288) @,5) (0.5,0.75)
stage3  det - (12, 16,20) | (0.72,0.8,0.88) ©,1) (256, 272, 288) @,5) (0.5,0.75)
seg (40, 44, 48) | (0.36, 0.4, 0.44) ©,1) (256, 272, 288) @,5) (0.5,0.75)
cls (32,40, 48) | (0.36, 0.4, 0.44) ©,1) (256, 272, 288) @,5) (0.5,0.75)
staged  det - (6,8,10) | (1.04,1.2,1.36) (0, 1) (256, 272, 288) @,5) (0.5,0.75)
seg (40, 44, 48) | (0.72,0.8, 0.88) ©,1) (512, 536, 560) @,5) (0.5,0.75)

Table 1. The search space of Poly-PC (base). For simplicity, we put the search space of stem channel into stage 1.

| Stem Channel | Neigh Num | Group Radius | Res-MLP Num | Output Channel | Expansion rate | Reduction rate

cls | (64,72,80) | (40,48,56) | (0.09,0.1,0.11) (1,2) (128, 136, 144) @,5) (0.5,0.75)
stagel  det | (128, 136, 144) | (56, 64,72) | (0.18,0.2,0.22) (1,2) (256, 272, 288) @,5) (0.5,0.75)
seg | (32,40,48) | (48,56, 64) | (0.09,0.1,0.11) (1,2) (64, 72, 80) @,5) (0.5,0.75)
cls (40, 48, 56) | (0.18,0.2, 0.22) (1,2) (128, 136, 144) @,5) (0.5,0.75)
stage2  det - (28,32, 36) | (0.36,0.4, 0.44) (1,2) (512, 528, 544) @,5) (0.5,0.75)
seg (48, 56, 64) | (0.18,0.2, 0.22) (1,2) (128, 136, 144) @,5) (0.5,0.75)
cls (40, 48, 56) | (0.36.,0.4, 0.44) (1,2) (256, 272, 288) @,5) (0.5, 0.75)
stage3  det - (12, 16, 20) | (0.72, 0.8, 0.88) (1,2) (512, 528, 544) @,5) (0.5, 0.75)
seg (48, 56, 64) | (0.36, 0.4, 0.44) 2,3) (256, 272, 288) @,5) (0.5, 0.75)
cls (40, 48, 56) | (0.36, 0.4, 0.44) (1,2) (512, 536, 560) @,5) (0.5, 0.75)
staged  det - (6,8,10) | (1.04, 1.2, 1.36) (1,2) (512, 528, 544) @,5) (0.5, 0.75)
seg (48, 56, 64) | (0.72, 0.8, 0.88) 2.3) (512, 536, 560) @,5) (0.5, 0.75)

Table 2. The search space of OFAT-PC (large). For simplicity, we put the search space of stem channel into stage 1.

Method ‘ Points ‘ Flops (G) Params Count ‘ OA
PointNet++ [10] 1k 32 100% 71.9
PointCNN [6] 1k - 100% 78.5
DGCNN [16] 1k 24 100% 78.1
DRNet [12] 1k - 100% 80.3
GBNet [13] 1k - 100% 80.5
PRANet [2] 1k - 100% 82.1
MVTN [4] 1k 1.8 100% 82.8
PointMLP [7] 1k - 100% 85.4
Poly-PC (base) 1k 33 88% 86.8
Poly-PC (large) 1k 5.8 50% 87.9

Table 3. Shape classification results on the ScanObjectNN dataset.

by using the gradient on each GPU. Note that when opti-
mizing a task with multiple GPUs, the gradients of the task
on these GPUs would be averaged and then the task-specific
parameters are updated accordingly.

C.2. Evolution search.

After obtaining the trained Poly-PC, we perform an evo-
lution search to obtain the optimal subnets for each task.
Subnets are evaluated and picked according to the manager
of the evolution algorithm. Our objective here is to maxi-
mize the proxy score performance for each task while min-
imizing the model size (parameters). The proxy score for
3D shape classification is overall accuracy, for 3D seman-

tic segmentation is mean classwise intersection over union
(mIoU), and for 3D object detection is mean average pre-
cision (mAP) at 0.25 threshold, i.e., mAP@0.25. At the
beginning of the evolution search, we pick 50 random ar-
chitecture as seeds. The top 10 architectures are picked as
parents to generate the next generation by crossover and
mutation. For a crossover, two randomly selected candi-
dates are picked and crossed to produce a new one during
each generation. For mutation, a candidate mutates its depth
with probability Py first. Then it mutates each block with a
probability of P, to produce a new architecture. We set Py
to 0.2 and P,, to 0.4 in all our experiments.

D. Incremental learning for ScanObjectNN

In this part, we illustrate that Poly-PC is designed to en-
able incremental learning. We add the real-world object
classification dataset ScanObjectNN into Poly-PC. ScanOb-
jectNN is comprised of approximately 15k real scanned ob-
jects categorized into 15 classes with 2,902 distinct object
instances. Existing point cloud analysis methods are signifi-
cantly hampered by occlusions and noise of ScanObjectNN.
Following [11], we experiment on PB_T50_RS, the hardest
and most commonly used variant of ScanObjectNN. When
Poly-PC is trained on the three datasets in the main paper,
we fit such new task with task-specific parameters while



freezing all task-shared parameters. The results are reported
in Tab. 3. The training recipe is given as: AdamW optimizer
with weight decay 0.05, initial learning rate 0.008 with co-
sine annealing, a batch size of 16, and total epochs 100.
Poly-PC (base) and Poly-PC (large) surpass existing meth-
ods by non-trivial margins in terms of overall accuracy (OA)
while using fewer model parameters. Specifically, Poly-
PC (base) surpasses baseline PointNet++ [10] 8.9 units and
PointMLP [7] 1.4 units in terms of OA, demonstrating the
efficacy of Poly-PC. Moreover, since a substantial piece of
the network (i.e., the backbone) is shared among tasks, we
only needs extra 88% parameters for Poly-PC (base) and
50% parameters for Poly-PC (large), further demonstrating
that Poly-PC scales up more gracefully as the number of
tasks increases.

E. Details on Poly-PC Architecture
E.1. Network input

ModelNet40 and ScanObjectNN. For 3D point classi-
fication, Poly-PC(base/large) takes a randomly subsampled
point cloud as input, with a size of N ;5 X C’élns, where N
is the number of sampled points and is set to 1024, and

in = 6 denotes the input coordinate and the normalized
coordinate of each point.

S3DIS. For semantic segmentation, Poly-PC(base/large)
takes a randomly subsampled point cloud as input, with a
size of Nyeq x C;oY, where is the number of sampled points
and is set to 4096 for Poly-PC (base) and 16384 for Poly-PC
(large), and C7, = 9 denotes the input coordinate, color
and normalized input coordinate of each point.

SUNRGBD. For object detection, Poly-PC (base/large)
takes a randomly sampled point cloud of a SUNRGB-D
depth image with a size of Ny X C’;’cft, where Nge; set
to 20k is the number of sampled points, and C", = 4 the
input coordinate and its height (distance to floor). The floor
height is estimated as the 1% percentile of heights of all the

points.

E.2. Subsample points number in each Res-SA layer

Poly-PC comprises four Res-SA layers to extract point
features, with each Res-SA layer employing the furthest
points sampling method to downsample the number of input
points. For Poly-PC (base) in point classification, the four
Res-SA layers downsample the points number to 512, 256,
64 and 16, respectively. For Poly-PC (large) in point clas-
sification, the four Res-SA layers downsample the points
number to 512, 256, 128 and 64, respectively. For Poly-PC
(base) in point segmentation, the four Res-SA layers down-
sample the points number to 1024, 256, 64 and 16, respec-
tively. For Poly-PC (large) in point segmentation, the four
Res-SA layers downsample the points number to 1024 x 4,
256 x 4, 64 x 4 and 16 x 4 respectively. For both Poly-

Layer name ‘ input layer ‘ layer params

classification
SA1l raw point cloud | (512, 0.1, [32,32,64])
SA2 SAl (256, 0.2, [64,64,128])
SA3 SA2 (64, 0.4, [128,128,256])
SA4 SA3 (16, 0.4, [256,256,512])

segmentation

SA1 raw point cloud | (1024, 0.1, [32,32,64])
SA2 SAl (256, 0.2, [64,64,128])

SA3 SA2 (64, 0.4, [128,128,256])

SA4 SA3 (16, 1.8, [256,256,512])
detection

SAl raw point cloud | (2048, 0.2, [64,64,128])

SA2 SAL (1024, 0.4, [128,128,256])

SA3 SA2 (512, 0.8, [128,128,256])

SA4 SA3 (256, 1.2, [128,128,256])

Table 4. Backbone network architecture: layer details for each
task.

PC (base) and Poly-PC (large) in point object detection, the
four Res-SA layers downsample the points number to 2048,
1024, 512 and 256, respectively.

E.3. Structures for each task

Fig. 2 and Fig. 3 plot the architectures for all tasks
searched by Poly-PC.

F. Implementation details in ablation study

The effect of different proposed modules. We start
with the baseline that uses the naive SA layer in Poly-PC to
train multiple tasks. In this section, we provide the follow-
ing additional details about the baseline: The backbone net-
work employs four set abstraction layers, with layer param-
eters shown in Tab. 4. Each set abstraction (SA) layer has a
receptive field determined by a ball-region radius r, an MLP
network for point feature transform M LP][cy, ..., ¢x] where
c; is output channel number of the i-th layer in the MLP.
The SA layer also subsamples the input point cloud with
farthest point sampling to n points. Each SA layer is speci-
fied by (n,r, [c1, ..., cx]) as shown in Tab. 4. For detection,
we use two feature propagation (FP) layers to upsample the
point features by interpolating the features on input points to
output points. For segmentation, we use four feature prop-
agation (FP) layers. We position the feature propagation
layer in the head of each task and treat them as task-specific
parameters. Experimentally, we optimize these three tasks
using the same training protocol as that introduced in the
main work for training supernets. Throughout all ablation
trials, we enable all tasks to share the same proportion of
parameters as the main results.

G. Limitation

In this paper, we present Poly-PC, a unified framework
that simultaneously learns numerous point cloud tasks un-



der distinct dataset domains. Poly-PC is storage-efficient
since multiple models with the vast majority of shared pa-
rameters in the backbone can be deposited into a single one.
However, from the experiments, we observe that the param-
eters of head network for some tasks are relatively large,
yet Poly-PC does not consider the parameter sharing in the
head for all tasks. In the future, we will build an encoder-
decoder structure that enables all tasks to share parameters
throughout the network rather than only backbone network.
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(b) Point segmentation
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(c) Point detection

Figure 2. Architectures of Poly-PC (base) for point classification, segmentation and detection. All tasks share weights of their common

parts in each layer of the backbone.
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(a) Point classification
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(b) Point segmentation
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(c) Point detection

Figure 3. Architectures of Poly-PC (large) for point classification, segmentation and detection. All tasks share weights of their common

parts in each layer of the backbone.



