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A. Analysis on Convergence
Firstly, we can find:

log p(ϕ,θ|X ,Y) = log p(Z,ϕ,θ|X ,Y)−log p(Z|X ,Y,ϕ).
(1)

Then, we take the expectation of Z|X ,Y,ϕ(t),θ(t) for
the left and right sides of the equation:

EZ|X ,Y,ϕ(t),θ(t) [log p(ϕ,θ|X ,Y)] =

EZ|X ,Y,ϕ(t),θ(t) [log p(Z,ϕ,θ|X ,Y)]−
EZ|X ,Y,ϕ(t),θ(t) [log p(Z|X ,Y,ϕ)],

(2)

where ϕ(t) and θ(t) are parameters in t-th iteration. After
simplifications, we can find:

log p(ϕ,θ|X ,Y) = L(Z,θ,ϕ;X ,Y)−
EZ|X ,Y,ϕ(t),θ(t) [log p(Z|X ,Y,ϕ)],

(3)

where L(Z,θ,ϕ;X ,Y) is the ELBO in t-th iteration.
In M-step, the parameters ϕ and θ are updated by maxi-

mizing the ELBO:

ϕ,θ = argmaxL(Z,θ,ϕ;X ,Y). (4)

Thus, we have:

L(Z,θ(t+1),ϕ(t+1);X ,Y) ≥ L(Z,θ,ϕ;X ,Y). (5)

It’s easy to find:

L(Z,θ(t+1),ϕ(t+1);X ,Y) ≥ L(Z,θ(t),ϕ(t);X ,Y). (6)

For EZ|X ,Y,ϕ(t),θ(t) [log p(Z|X ,Y,ϕ)], because:

DKL(Z|X ,Y,ϕ(t),θ(t)||Z|X ,Y,ϕ(t+1),θ(t+1)) ≥ 0.
(7)

It’s equivalent to:

EZ|X ,Y,ϕ(t),θ(t) [log
p(Z|X ,Y,ϕ(t+1),θ(t+1))

p(Z|X ,Y,ϕ(t),θ(t))
] ≤ 0. (8)

Thus, we have:

p(Z|X ,Y,ϕ(t+1),θ(t+1)) ≥ p(Z|X ,Y,ϕ(t),θ(t)). (9)

With combining the Tab. 2, we have:

log p(ϕ(t+1),θ(t+1)|X ,Y) ≥ log p(ϕ(t),θ(t)|X ,Y).
(10)

For the posterior of Z , p(Z|X ,Y,ϕ,θ) =
p(Z,ϕ)p(X ,Y|Z,θ), since the prior of Z is nearly
static (the prior knowledge is contained in the network
structure), and the likelihood is maximized in M-step, we
can find:

p(Z(t+1)|X ,Y,ϕ(t+1),θ(t+1)) ≥ p(Z(t)|X ,Y,ϕ(t),θ(t)).
(11)

Thus, we have:

p(Z(t+1),ϕ(t+1),θ(t+1)|X ,Y) ≥ p(Z(t),ϕ(t),θ(t)|X ,Y).
(12)

Since p(Z,ϕ,θ|X ,Y) is upper bounded by 1, thus the EM-
algorithm in our method is convergent.

B. Analysis on the Coordination Optimization
To further explore the effort of the coordination opti-

mization strategy, we record the estimated PSFs and metrics
in different iterations during training. As shown in Fig. 1,
we initialize the blur kernel as an isotropic Gaussian kernel
with variance [0.1, 0.1]. The estimated kernel is gradually
adapted toward the groundtruth. Meanwhile, the metrics of
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Figure 1. Metrics and estimated blur kernels during training with
the coordination optimization.

recovered HR-HSI grow in step with the degradation esti-
mation, which confirms the existence of the postive feed-
back loop between fusion and degradation estimation.

As a comparsion, we break the feedback cycle in coor-
dination optimization. In detail, we replace the estimated
PSF in the optimization of the fusion module with fixed PSF
(isotropic Gaussian kernel with variance [0.1, 0.1]). The re-
sult is depicted in Fig. 2.
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Figure 2. Metrics and estimated blur kernels during training with-
out the coordination optimization.

The degradation estimation converges slower compared
with the setting under coordination optimization (50 epoch
vs 40 epoch). Similarly, the metrics grow more slowly
and volatilely. Without the guidance of degradation estima-
tion, the fusion module lost in incorrect optimized dirction.
Then, the inaccurate recovery confuses the degradation es-
timation.

We also contrasts the performance of fine-tuning under

the fixed degradation and estimated degradation. As shown
in Fig. 3, fine-tuning with coordination optimization real-
izes better and stabler metrics than the setting without coor-
dination optimization, especially in PSNR. The large differ-
ence in performance verifies the vital role of the guidance
of correct degradation. Moreover, we fine-tune the models
trained with coordination optimization and without coordi-
nation optimization. In the fine-tuning stage, we guide the
fusion model with estimated PSF. As shown in Fig. 4, the
two settings have almost the same performance, which fur-
ther confirms the vital effort of the guidance from estimated
degradation.

Figure 3. Performance comparsion between fine-tuning with co-
ordination optimization (with COP) and without coordination op-
timization (w/o COP).

Figure 4. Performance comparsion between fine-tuning from the
model trained with coordination optimization (with COP training)
and fine-tuning from the model without coordination optimization
(w/o COP training).

C. Hyper-parameter Analysis

We set α1, α2, α3, β = 0.5, 0.2, 0.2, 0.5 as the default
setting in our method. To analyze the effort of each param-
eter, we vary each parameter in the range of [0, 0.8] with a
step size of 0.1. During testing one parameter, the other pa-
rameters are fixed. α1, α2, α3 are parameters corresponding
to degradation estimation. As shown in Fig. 5, our method
performs very stably in various settings of these parame-
ters. Meanwhile, even the weight of one parameter is set
zero, the other parameters will compensate the eliminated
effort.
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(b) Performance under deffierent settings of α2
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(c) Performance under deffierent settings of α3

Figure 5. Analysis on parameters related to degradation estima-
tion.

The hyper-parameter β determines the step length of gra-
dient descent in the fusion module. With setting β = 0, the
fusion module keeps the initial weights during the whole
training stage. The experiment in Fig. 6 confirms above
indication though the poor performance when β = 0.
As a contrast, our method perform well and stably in the
other settings of β. Finally, we select the best setting
[0.5, 0.2, 0.2, 0.5] as the default parameter weights of our
method.
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Figure 6. Analysis on parameter related to fusion.

D. Network Structure

In our method, the fusion module is established by a
variational auto-encoder. The encoder is conducted by 5
convolution layers with concatenating HR-MSI before each
layer to maintain the spatial information. The decoder is
conducted by two fully-connected layers and the number of
nodes in each layer depends on the number of bands in HR-
HSI at each dataset. Due to the lightweight structure, the
network is computationally efficient.

Table 1. Detailed network architecture of the fusion module.

dataset
CAVE/
Harvard Chikusei WV 2

module operation kernel size

Encoder

CONV+
LReLU 4× 3× 1× 1

Concat HR-MSI
CONV+
LReLU 7× 8× 1× 1

Concat HR-MSI
CONV+
LReLU 11× 16× 1× 1

Concat HR-MSI
CONV+
LReLU 19× 24× 1× 1

Concat HR-MSI
CONV+
LReLU 24× 16× 1× 1

Decoderµ
FC+

LReLU 16× 24 16× 64 16× 18

FC+
ReLU 24× 31 64× 128 18× 8

Decoderσ
FC+

LReLU 16× 24 16× 64 16× 18

FC+
ReLU 24× 31 64× 128 18× 8

E. Experiment under Image-wise Changed
Degradation

In this circumstance, we synthesize LR-HSIs in the train-
ing set and testing set through random selecting PSFs from
the generated 6 blur kernels. As shown in Tab. 2, the
proposed method outperforms other methods with a large
margin. Refered to the experiments of consistent degra-
dation in training and testing, we can find that the unsu-
pervised methods have smaller performance decline than
supervised methods, which indicates the necessity of fine-
tuning in HSI-SR. The visual result is depicted in Figs. 7
to 9. Obviously, our method surpass other methods in edge-
preserving.



Table 2. Average performance of test methods on three synthetic datasets under inconsistent degradation and various degradation.

Datasets CAVE Harvard Chikusei
Methods PSNR SAM ERGAS UIQI PSNR SAM ERGAS UIQI PSNR SAM ERGAS UIQI
CNMF 27.4 17.9 1.33 0.815 25.6 13.3 1.67 0.941 26.7 19.7 1.56 0.849
Hysure 28.0 24.0 1.25 0.791 35.3 6.97 0.638 0.927 21.9 10.8 2.71 0.631
CSTF 28.2 15.8 1.12 0.816 34.8 6.91 0.632 0.941 24.6 9.74 1.76 0.849

MHFNet 32.2 10.0 1.17 0.761 40.8 3.52 0.317 0.985 32.1 5.51 0.705 0.958
CUCaNet 34.1 9.10 0.964 0.922 37.8 6.14 1.42 0.917 28.1 5.77 0.781 0.891

UAL 34.9 8.97 0.797 0.845 40.7 8.90 0.931 0.938 26.2 6.23 1.42 0.789
Ours 39.5 6.83 0.355 0.944 42.2 3.23 0.280 0.995 32.2 3.80 0.665 0.979

(a) CNMF (b) CSTF (c) HySure (d) MHFNet (e) CUCaNet (f) UAL (g) Ours (h) Ground truth

Figure 7. Visual SR results and the corresponding error images on scene of glass tiles in CAVE dataset under the image-level changed
degradation, where we display the 20th (580nm) band of the HR-HSI images.

(a) MHFNet (b) CUCaNet (c) UAL (d) Ours (e) Ground truth

Figure 8. Visual SR results and the corresponding error images of imgf33 in Harvard dataset under the image-level changed degradation,
where we display the 18th (540nm) band of the HR-HSI images.

(a) CNMF (b) CSTF (c) HySure (d) MHFNet (e) CUCaNet (f) UAL (g) Ours (h) HR-HSI

Figure 9. Visual SR results and the corresponding error images on Chikusei dataset under the image-level changed degradation, where we
display the test images with bands 70-100-36 as R-G-B to show.
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