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Table 1. The result of different retrieval strategies on VeRi776 [2].

Methods MP (M) FLOPs (G) mAP(%) RL(%)
standard retrieval strategy ~ 14.56 4.56 80.28  96.13
role-cross retrieval strategy ~ 14.30 4.46 80.67  96.66

Table 2. The result of RGGR vs CWGR [1] on VeRi776 [2].

Methods MP (M) FLOPs (G) mAP(%) R1(%)

CDD 18.59 5.77 80.36  96.48
CDD+CWGR [1] 14.35 4.46 7941  95.71
CDD+RGGR 14.30 4.46 80.67 96.66

1. Experiments
1.1. RGGR’s Retrieval Strategy Analysis

In pipeline of RGGR, we adopt another retrieval strat-
egy (i.e., role-cross retrieval) to acquire accurate retrieval
results. Specifically, we use F; instead of F; as the query
set to retrieve the gallery set G because F is not invariant
and semantic enough for presenting the image information
during early training. Thus, we analyze the influent of dif-
ferent retrieval strategies on RGGR performance, as shown
in Table 1. From the table, we can find that the role-cross
retrieval strategy outperforms the standard retrieval strategy
(i.e., Fs as the query set) by 0.39% mAP and 0.53% R1,
demonstrating that using F; as the query set can acquire
more accurate retrieval results

1.2. RGGR vs CWGR

On the capacity dynamic distillation framework (CDD),
we compared RGGR with a convolutional layer weight gra-
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dient resetting (CWGR) [ 1], as shown in Table 2. From the
table, we can find that CWGR can further improve the in-
ference performance of the student network but reduce the
accuracy performance because output channels with small
weight values of DGC may be necessary for retrieval re-
sults. Thus, RGGR outperforms CWGR by 1.27% mAP
and 0.95% R1.

1.3. Hyper-parameter Analysis

The G-LASSO weight (i.e., « in Eq. (3) The hyper-
parameter « is crucial to CDD+RGGR to control the pa-
rameter sparsity of the student network. Specifically, as «
value increases, the accuracy (i.e., mAP) performance de-
creases slightly, but the computational performance (i.e.,
MP and FLOPs) improves significantly. For example, on
In-shop [3], as the o value increases from 3 x 1073 to
6 x 1073 the mAP performance just drops from 81.5% to
81.1%, while the MP performance obviously improves from
16.2M to 14.0M. It demonstrates that our method has good
insensitivity to parameter sparsity, which can accelerate a
student network under the premise of preserving the accu-
racy performance.

The top-K retrieval result (i.e. K, in Eq. (7)) As K value
increases, RGGR has more reference information when ze-
roing the learning gradient of unimportant channels. Fig. 2
exhibits the influence of K on CDD+RGGR mAP. Specif-
ically, CDD+RGGR has good robustness on mAP and the
mAP at K > 1 outperforms at K = 1 on Veri776 [2]. Be-
sides, K value hardly affects inference performance.
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Figure 1. The influences of « values. (a) on mAP. (b) on MP. (c) on FLOPs. As « value increases, the mAP performance decreases slightly,
but the computational performance improves significantly.
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Figure 2. The influences of K values. (a) on mAP. (b) on MP. (c) on FLOPs. As K value increases, the mAP performance of the student

network will fluctuate slightly, and the inference performance will be stable.
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