
VideoTrack: Learning to Track Objects via Video Transformer
-Supplementary Materials-

In this supplementary material, we first provide some im-

plementation details mentioned in main text in Sec. 1, e.g.

training and testing details. In Sec. 2, we then report ad-

ditional VOT benchmark results including OTB [22] and

VOT [12, 13] benchmarks. We also provide more explo-

ration studies of our method through experimental and the-

oretical analysis and more extensive conclusions on Video-

Track framework in Sec. 3. Finally, we provide some vi-

sualization and attribute analysis of VideoTrack on tracking

benchmarks and selected video sequences in Sec. 4.

1. Experiment Details

Training. We build our VideoTrack model on top of the

vanilla ViT-Base [5] model pre-trained with MAE [8]. We

set the video frame resolution as follows: The first template

and intermediate templates all have 128×128 pixels; The

search frame has 256×256 pixels. The search area factor

of template and search frame are set to be 2 and 4, respec-

tively. Then, we finetune the whole model on the tracking

datasets. In particular, for each tempaltes&search frame se-

quence from the training datasets, we compute the losses

based on the classification and regression outputs from the

prediction head. We use standard cross-entropy loss for

the classification loss: all pixels within the ground-truth

box are regarded as positive samples and the rest are neg-

ative. We use GIoU [20] loss and L1 loss for the regres-

sion loss. For the experimental settings with tubelet em-

bedding or time window partition, we add paddings to the

template frames in order to keep the same resolution with

the search frame. For the full-dataset training, the training

splits of COCO [15], LaSOT [6], GOT-10k [10] (1k forbid-

den sequences from GOT-10k training set are removed fol-

lowing the convention [23]) and TrackingNet [19] are used.

Common data augmentations including horizontal flip and

brightness jittering are used in training. We sample a se-

quence of video frames at random to construct the video-

level inputs for VideoTrack. For hardware restriction and

memory efficiency, we set each Tesla V100 GPU holds 16

video sequences (each has 4 frames), resulting in a total

batch size of 128 for 8 GPUs. We train the model with

AdamW [16] optimizer, set the weight decay to 10−4, the

initial learning rate for the backbone to 4× 10−5 and other

parameters to 4 × 10−4, respectively. The total training

epochs are set to 300 with 60k image pairs per epoch and we

decrease the learning rate by a factor of 10 after 240 epochs.

All the forbidden sequences defined by the VOT2019 chal-

lenge are abandoned. The training sequences in each itera-

tion are sampled from one video sequence or constructed by

a static image. On static images, we also construct an video

sequence by applying data augmentation like flip, bright-

ness jittering and target center jittering.

For GOT-10k [10], we only the training split of GOT-

10k to train VideoTrack, following the official test proto-

col that no additional training datasets are allowed. It has

the zero overlap of object classes between training and test-

ing subset. The total number of epoch for training is set to

100 and the learning rate decays by a factor of 10 after 80

epochs. Other technical details are the same with the full-

dataset training.

Head and loss. We adopt the similar prediction head and

loss in [24, 27]. The encoded search feature is fed into

a fully convolutional network (FCN), which consists of L
stacked Conv-BN-ReLU layers for each output. After ob-

taining the fully fused feature tokens fzx, we drop the tem-

plate image tokens fz and reshape the search image tokens

fx into a 2D feature map. The reshaped 2D feature map

is fed into the classification and regression branches of the

prediction network for corresponding outputs. Specifically,

for classification, location (xl, yl) on feature map f cls
x is

considered as a positive sample if its corresponding loca-

tion on the input image falls into the ground-truth bounding

box. Otherwise, it is a negative sample. The total stride

of the backbone is set to 16. For the regression target of

each positive location (xi, yi) on feature map freg
x , the final

layer predicts the distances from the corresponding loca-

tion to the center location (xi − xgt, yi − ygt), height and

width of the bounding box (wi, hi), denoted as a 4D vec-

tor t∗ = (x∗, y∗, w∗, h∗). Hence, the regression targets for

location (xl, yl) can be formulated as

x∗ = n{xi + xgt}, y∗ = n{yi + ygt}
w∗ = n{wi}, h∗ = n{hi}

(1)

where n{...} refers to normalizing the absolute distance into
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Table 1. Comparisons on additional three tracking benchmarks: OTB100 [22], VOT2018 [13] and VOT2020 [11].

Method Year
OTB100 [18] VOT2018 [6] VOT2020 [19]

AUC P EAO Acc. Rob. EAO Acc. Rob.

SiamFC [1] 2016 58.7 77.2 0.188 0.50 0.59 0.179 0.418 0.502

ATOM [4] 2019 67.1 87.9 0.401 0.59 0.20 0.271 0.462 0.734

DiMP [2] 2019 68.4 89.9 0.440 0.60 0.15 0.274 0.457 0.740

SiamRPN++ [14] 2019 69.6 91.4 0.415 0.60 0.23 - - -

D3S [17] 2020 - - 0.489 0.64 0.15 0.439 0.699 0.769

Ocean [26] 2020 67.2 90.6 0.489 0.592 0.117 0.430 0.693 0.754

TrDiMP [21] 2021 - - 0.397 0.598 0.231 - - -

TransT [3] 2021 69.4 - 0.302 0.59 0.42 - - -

Stark [3] 2021 - - - - - 0.308 0.481 0.775

SBT [7] 2022 70.9 91.5 - - - 0.515 0.825 0.752

VideoTrack Ours 69.8 90.1 0.341 0.60 0.34 0.321 0.461 0.776

[0, 1]. (xi, yi) and (wi, hi) denote the center location and

box size of the predicted bounding box B∗ associated with

point (xl, yl). During training, we adopt the weighted focal

loss [27] for the classification head, the �1 loss, and gen-

eralized IoU loss [20] for the regression head. Finally, the

overall loss function is as follows:

Ltrack = Lcls + λiouLiou + λL1L1, (2)

where λiou = 2 and λL1 = 5 are the weight coefficients as

in [23, 24].

Inference details. For VideoTrack, during inference, the

regression head and classification head generate three re-

sponse maps which embed estimated size shapes (size and

offset maps) and location confidence values (classification

map), respectively. The maximum confidence value and its

bounding box size are chosen to be final predicted target.

The templates and search image size are chosen to 128×128
and 256×256, respectively. To validate the effectiveness of

VideoTrack, no other tricks such as template updating con-

trolled by confidence value and online module are adopted.

We adopt a simple online strategy in this work to avoid

tricky hyper-parameters. Though our VideoTrack model is

independent of the number of frames, for the current search

frame Ft, we select fixed number (T = 4) of frames from

historical frames (i.e. frame Ft−N×T to frame Ft−1) as in-

termediate templates. Each intermediate template is sam-

pled from the nearest frame with the fixed time interval N ,

where we set to 30 frames here. When current time index

t is smaller or over the capacity of intermediate template

queue, we duplicate the first template or drop the farthest

intermediate template at once.

Detailed descriptions of VOT benchmarks in main text.
GOT-10k [10] is a recently released large-scale generic ob-

ject tracking benchmark, containing 10,000 videos totally,

in which the testing set has 180 videos. The ground truths

of the testing set are also withheld so that all tracking re-

sults must be evaluated in a specific evaluation server. Dif-

ferent from others, GOT10k benchmark restricts trackers

to use only the training set for training. GOT-10k has the

zero overlap of object classes between training and test-

ing subset. LaSOT [6] is also a large-scale single object

tracking dataset with high-quality annotations. Its testing

set consists of 280 long videos, with an average of 2500

frames per video. Thus, the robustness of trackers is cru-

cial against complicated scenarios, such as occlusions, out-

of-view, etc. The ranking metrics are the AUC, Precision,

and Normalized Precision (PNorm). TrackingNet [19] is

a recent large-scale tracking benchmark consisting of 511

sequences for testing. The evaluation is performed on the

online server. The testing set contains 511 videos without

publicly released ground truths. We evaluate our methods

on the test set of TrackingNet, which consists of 511 videos

UAV123 [18] is designed to evaluate trackers in UAV ap-

plications, including 123 low altitude aerial videos, with an

average of 915 frames per video. Due to the characteristics

of UAV, this dataset has numerous scenarios with partial and

full occlusions, out-of-view, and small objects. Thus, many

objects have quite low resolutions.

2. Additional VOT Benchmark Results
In Tab. 1, to extensively evaluate the performance of

VideoTrack, we further test it in additional three popu-

lar VOT benchmarks: OTB100 [22], VOT2018 [13] and

VOT2020 [11].

OTB-2015 [22]. OTB-2015 is a classical benchmark in vi-

sual object tracking, containing 100 short-term videos with

590 frames per video on average. We report the results on

OTB-2015. The OTB2015 dataset is known to be highly

saturated over recent years As shown in Tab. 1, it is rel-

atively harder to obtain a significant performance gain on

this benchmark. The reason why the older trackers scores

higher in AUC and precision is that the dataset is easy to

be overfitting and contains too few testing videos. How-

ever, VideoTrack still outperforms recent strong pair-wise
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Figure 1. Ablations the attention matching between z and x in

building unit. AO is evaluated in GOT-10k [10].

transformer-based tracker TransT which shows the effec-

tiveness of temporal information.

VOT2018 [13]. The 2018 version of the visual object

tracking (VOT) challenge contains 60 videos. It has a re-

initialization testing protocol which demands the tracker to

restart the the tracked target is lost. Following the evalua-

tion protocol of the VOT2018 dataset, we report the results

of our tracker in terms of expected average overlap (EAO),

accuracy (A), and robustness (R) and compare it with state-

of-the-art trackers. Compared with these recently proposed

approaches, our VideoTrack approach still exhibits satis-

factory results comparing to the transformer-based tracker

TransT, which is published last year. Since the dataset is

relatively small and easy to be overfit. VideoTrack does not

score as much as the top-rank trackers.

VOT2020 [13]. The 2020 version of the visual object track-

ing (VOT) challenge contains 60 videos. It replaces the

re-initialization testing protocol with one pass evaluation.

The difference is that the 60 testing videos are split into

multiple testing sequences to extensively test the perfor-

mance of trackers. Following the evaluation protocol of

the VOT2020 dataset, we report the results of our tracker in

terms of expected average overlap (EAO), accuracy (A), and

robustness (R) and compare it with state-of-the-art trackers.

Please note that we adopt the bounding-box format instead

of mask, so that the accuracy (A) score is low. For fair com-

parison, we compare VideoTrack to the recent state-of-the-

art transformer-based tracker Stark. It shows a improvement

of 1.6 points in EAO which demonstrate the strong perfor-

mance of VideoTrack.

3. Additional Theoretical & Experimental
Analysis on VideoTrack.

In this section, we present more theoretical and experi-

mental Analysis on VideoTrack, including model architec-

ture variants and video attention schemes. We hope the

comprehensive analysis may inspire followers to solve VOT

task from the perspective of video-level modelling and de-

velop stronger VideoTrack models.

Why to have a hierarchical structure for the building
unit ? The original ViTtrack built on vanilla ViT [5] can be

Algorithm 1 Space-time position embedding

Input: video-clip input {F i
s}Ni=1, 1D learnable position embed-

ding Ps

Output: Posion encoded spatotemporal tokens {SPT i
s}Ni=1

1: Patch embedding to generate tokens. {T i
s}Ni=1 =

PatchEmbed({F i
s}Ni=1)

2: Spatial encoding. {ST i
s}Ni=1 = {T i

s}Ni=1 + Ps

3: Temporal interpolation on 1D learnable position em-

bedding. {P i
s}Ni=1 = F.interpolate(Ps, size =

(T,H,W ),mode = ′nearest′)
4: Temporal encoding. {SPT i

s}Ni=1 = {ST i
s}Ni=1 + P i

s

directly expand to spatiotemporal domain by adding more

frame-wise feature tokens into the transformer layers. This

model variant can also be regarded as stacking total L joint

space-time attention layers sequentially (L = 12 for the

ViT-base [5]). The main drawbacks of this straightfor-

ward model variant lie in two aspects: One issue is that

it has quadratic complexity in both space and time, i.e.,

O(S2T 2) and the total number of layers is the maximum

value (12 layers). Thus, the computation Flops rises dra-

matically. The another issue is that the 12 times joint space-

time matching increases the burden for the model to differ-

entiate the temporal differences among all the spatiotempo-

ral tokens. The phenomenon that this model variant cannot

benefit from more templates but suffer from the computa-

tion costs validates that the temporal contexts are not well-

exploited. To solve these two issues, we have two trans-

former layers to formulate a basic building unit: the first

layer is to conduct spatial attention within each frame and

the second layer is for joint space-time matching. Thus, the

computation complexity is alleviated for the quadratic com-

plexity in both space and time is reduced to 6 transformer

layers. Moreover, the separated spatial attention matching

within each frame can help model to recognize the tempo-

ral differences to some extent. Based on above observa-

tions, we bring hierarchical structure to the building unit in

video transformer tracking model and we further increase it

to three transformer layers.

Weight-sharing video attention block or performing
separated attention computation in each layer? We

adopt separated attention computation in each layer for Pat-

tern V, which has totally different hierarchical structure

comparing to other model patterns (weight-sharing atten-

tion among different branches). The key difference is that

the attention matching between search feature tokens x and

the first template feature tokens z is conducted in all three

layers of the triplet-block. As shown in Fig 1, we explore

the attention matching between z and x in the building unit

with two-level structure, where the first layer is to encode

the spatial features and the second layer is to modelling

the temporal dependencies. We find that the more atten-



case NT =1 NT =2 NT =3

12 joint space-time

attention layers

70.1 67.1↓ 66.5↓

Table 2. Ablations on joint space-time attention. NT is the number

of templates. The performance is AO in GOT-10k [10].

tion matching between x and z can contribute to a better

tracking performance as the VOT needs a strong and reli-

able appearance information (68.3% vs. 60.2 %). It also in-

dicates that the improvement of temporal contexts are built

on the appearance matching between template and search

frame. In the case that all layers in triplet-block perform the

attention matching between x and z, the dynamic informa-

tion provided by the intermediate templates can further raise

the tracking performance, leading to the best performance.

This is also the reason why the proposed disentangled dual-

template mechanism has three-layer attention matching be-

tween z and x in pattern VI.

Additional details for position embedding. The space-

only position embedding follows the settings with 1D learn-

able position embeddings in ViT [5]. For the space-time

position embedding, we expand the 1D learnable position

embeddings into temporal domain through nearest neighbor

interpolation. The pseudo code is shown in Alg. 1. space-

time position encoding is implemented by two steps: one

is the spatial position encoding for each frame-wise tokens

while the second step is to encode the temporal positional

differences into inter-frame tokens.

Analysis on joint space-time video attention. Since

VideoTrack is build on the ViT [5] which has 12 transformer

layers (L), the main drawback of this joint space-time meth-

ods is the quadratic complexity with space (S) and time

(T ) dimension, which is O(LS2T 2). As shown in Tab. 2,

we find that the straightforward joint space-time attention

cannot handle the long temporal extent which the perfor-

mance goes down when more templates are used (70.1%

vs. 67.1 % vs. 66.5 %). This is caused by the reason that

dense space-time matching that treats every spatiotempo-

ral token equally, is more easily influenced by the redun-

dancy in video frames. The position encoding cannot pro-

vide enough temporal clues for complex temporal reason-

ing. Thus, the performance of the case with more templates

is even worse than the pair-wise matching, which does not

need to handle temporal contexts.

Analysis on message token video attention. Message to-

ken communication can effectively reduce the computation

burden of video models. let the m denotes the pre-defined

number of tokens, the computation complexity of message

token communication is O((S + M)2(L2 )) = O(S2M2L)
(two-level structure building unit). Therefore the quadratic

complexity with with space (S) and time (T ) dimension is

reduced to space only, which greatly ease the computation

burden. However, the main drawback of message token

case (memory queue) T=10 T=20 T=30 T=40 T=50 T=60

Pattern I 72.1 72.3 72.7 72.4 71.8 71.7

Table 3. Ablations on the updating interval (T temporal frames) in

memory queue during inference. The performance is AO in GOT-

10k [10].

communication is that the thorough appearance clues and

context information cannot be conveyed, which is validated

in the main text. Moreover, the temporal redundancy and

the useful information cannot be effectively distinguished

by the model, hindering it from efficient temporal message

passing from templates to search frame. Here, we deeply

analysis the reason why message token cannot take effects

in visual tracking as it in high-level video understanding

tasks. VOT task needs to exploit more static/dynamic ap-

pearance clues which is illustrated in the main text in de-

tails. The pre-defined tokens summarize the overall scene

contexts from each template while it cannot decouple the

information into static and dynamic clues effectively. This

is also because the pre-defined tokens lose the spatial details

of each frame and the attention operation are weak at local

modelling that is crucial to pass spatial information.

Analysis on disentangled dual-template scheme. We an-

alyze the computation complexity of the disentangled dual-

template scheme in VideoTrack. The attention matching is

conducted through all layers which results in the O(S2L)
complexity. The cross/self attention among the intermedi-

ate templates results in the complexity O(S2T L
3 +S2T L

3 ).
Then the attention matching between search frame feature,

static and dynamic template is O(S2)L3 The overall compu-

tation complexity is O(S2T 2L
3 +S2 L

3 ) = O(S2T ). Though

the complexity still rises as the number of frame increasing,

the disentangled dual-template scheme gets rid of quadratic

complexity along with temporal dimension, i.e. O(S2T 2).
Therefore, our mechanism can convey meaningful appear-

ance clues thoroughly through direct cross attention match-

ing among templates, while still keep an affordable compu-

tation costs.

Online hyper-parameters. Comparing to the labour-

intensive hyper-parameters in DCF [2,4,9] methods and on-

line template updating, our introduce less hyper-parameters

to VideoTrack model. We ablate the different inference

settings in adopted memory queue mechanism in Tab. 3.

Though best time interval hyper-parameter can be varied

in different video scenarios, we can see that VideoTrack

is not too sensitive to the time interval hyper-parameter.

This is in contrast to the labour-intensive and tedious hyper-

parameters in temporal modelling methods [21,25] for pair-

wise Siamese tracking pipeline and online optimization in

DCF [2,4,9], which clearly show the strength of VideoTrack

to exploit the temporal information in video frames.

The potential to be applied in other vision tasks.
Template-matching mechanism has been widely applied in



Figure 2. Visualization results of the three VideoTrack settings: the lengths of input sequence are set to 3, 4 and 5, respectively. The frame

in second column is the nearest intermediate template tT whose the center point performs as the query for the cross attention. The third

and fourth row are another two intermediate templates tT−1 and t1, respectively.

Figure 3. More visualization results of the three VideoTrack settings. Other annotations can be referred to Fig. 2.

a variety of video understanding tasks. Our VideoTrack

framework can be thought as multi-template matching by

a neat feedforward model. Since the VideoTrack is built

with the attention block which is flexible to modelling the

inter-/intra-frame dependencies, it can further be applied to

other video tasks that can be improved by involving more

templates, such as video segmentation and video matting.

Since many works has focus on the single template match-

ing. we will do more future works to apply VideoTrack to

expand these single template-matching models.

4. Visualization and Attribute Analysis

Visualization results. As shown in Fig. 2 and Fig. 3, we

visualize the VideoTrack settings with short, medium and

long video sequences as inputs. The results clearly show



Figure 4. Attribute-based evaluation on the LaSOT benchmark [13]. The legend shows the precision scores of the precision plots.



that longer video sequences can help tracker to handle the

challenging scenarios, such as appearance variations, oc-

clusion and similar distractor objects. The most obvious

phenomenon is that VideoTrack can have a more accurate

size estimation of the tracked target, benefiting from the

stored historical appearance information. Tracking failures

are more frequent when lack of necessary temporal infor-

mation. The attention activation map also shows that differ-

ent video frames can improve the robustness of VideoTrack

model by selectively activating feature tokens in different

spatiotemporal location. Moreover, the over-long temporal

extends do not provide more useful clues but redundancy,

as the settings in short and long video sequence input have

similar performance when the video is short or the appear-

ance variation is not severe.

Attribute analysis. As shown in Fig. 4, we provide the

attribute evaluation on the LaSOT [6] benchmark. On the

LaSOT, our approaches show good results in various sce-

narios such as motion blur, background clutter, low resolu-

tion, and viewpoint change. It should be noted that our sim-

ple VideoTrack does not adopt complex online model opti-

mization techniques or temporal modelling modules, which

is more efficient and neat than the recent approaches such

as TrDiMP [21] and TrSiam [21].
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