
Supplementary: Visibility Aware Human-Object Interaction Tracking from
Single RGB Camera

Xianghui Xie Bharat Lal Bhatnagar Gerard Pons-Moll

University of Tübingen, Germany
Max Planck Institute for Informatics, Saarland Informatics Campus, Germany
{xxie, bbhatnag}@mpi-inf.mpg.de, gerard.pons-moll@uni-tuebingen.de

In this supplementary, we first list all the implementation
details of our method and then show more ablation study
results as well as comparison with CHORE [12] on NTU-
RGBD [6] dataset. We end with discussions of failure cases
and future works.

1. Implementation details
1.1. Obtaining SMPL-T meshes

To obtain the image-aligned SMPL meshes that have
consistent translation (SMPL-T) we keep the SMPL shape
parameters and optimize the body pose and global trans-
lation values. The loss weights for this optimization are:
λJ2D = 0.09, λreg = 1.0 × 10−5, λa = 25, λpi = 900. We
optimize the parameters until convergence with a maximum
iteration of 1000.

1.2. SIF-Net: SMPL-T conditioned interaction field

A visualization of our SMPL-T triplane rendering and
query point projection can be found in Fig. 1. We discuss
our network architecture and training details next.

Network architecture. We use the stacked hourglass net-
work [7] for both RGB image encoder f enc and SMPL ren-
dering encoder f tri. We use 3 stacks for f tri and the output
feature dimension is dtri

o = 64. Hence f tri : RH×W 7→
RH/4×W/4×64 where H = W = 512. We also use 3 stacks
for f enc but the feature dimension is denc

o = 256. Hence
f enc : RH×W×5 7→ RH/4×W/4×256. We also concatenate
the image features extracted from the first convolution layer
and query point coordinate to the features. Thus the total
feature dimension to our decoders is: d = (dtri

1 + dtri
o )× 3+

denc
1 + denc

o + 3 = 611, here dtri
1 = 32, denc

1 = 64. All de-
coders consist of three FC layers with ReLU activation and
one output FC layer with hidden dimension of 128 for the
intermediate features. The visibility decoder fv addition-
ally has a sigmoid output activation layer. The output shape
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Figure 1. Visualization of our SMPL-T triplane feature extrac-
tion and rendering. The triplane origin is placed at the SMPL-T
body center and we render the mesh from three views using or-
thographic projection: righ-left (A), back-front (B) and top-down
(C). The query point p is projected into the three planes using
same projection for rendering and we extract pixel aligned fea-
tures FA,FB ,FC from the feature planes respectively. Note that
we render the SMPL-T with color here for visualization, the actual
input to our network are silhouette images only.

is 2, 14, 9, 3, 1 for fu, fp, fR, f c, fv respectively.

Training. All feature encoders and decoders are trained
end to end with the loss: L = λu(Luh

+ Luo) + λpLp +
λRLR + λcLc + λvLv . Here Lui is the L1 distance be-
tween ground truth and predicted unsigned distance to hu-
man or object surface [12]. Lp is a standard categorical
cross entropy loss for SMPL part correspondence predic-
tion. LR, Lc, Lv are mean square losses between ground
truth and predicted values for rotation matrix, translation
vector and visibility score respectively. The loss weights
are: λu = 1.0, λR = 0.006, λc = 500, λc = λv = 1000.
The model is trained for 18 epochs and it takes 25h to con-
verge on a machine with 4 RTX8000 GPUs each with 48GB
memory. The training batch size is 8.

1.3. HVOP-Net: object pose under occlusion

We use three transformers fs, fo, f comb to aggregate fea-
tures from SMPL-T, object pose and joint human object in-
formation respectively. We use the 6D vector [19] to repre-
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sent the ration matrix of SMPL-T and object pose parame-
ters. Hence the SMPL-T pose dimension is 24 × 6 + 3 =
147, where 3 denotes the global translation. We predict
the object rotation only thus the object data dimension
is 6. The SMPL-T transformer fs consists of an MLP:
RT×147 7→ RT×128 and two layers of multi-head self-
attention (MHSA) module [9] with 4 heads. Similarly, the
object transformer fo consists of an MLP: RT×6 7→ RT×32

and two layers of MHSA module with 2 heads. The joint
transformer f comb consists of 4 layers of MHSA module
with 1 head only. GeLU activation is used in all MHSA
modules. We finally predict the object pose using two MLP
layers with an intermediate feature dimension of 32 and
LeakyReLU activation.

The model is trained to minimize the L1 losses of pose
value and accelerations: L = λposeLpose+λaccelLaccel, where
λpose = 1.0, λaccel = 0.1. It is trained on a server with 2
RTX8000 GPUs, each GPU has 48GB memory capacity. It
takes around 7h to converge (64 epochs).

1.4. SmoothNet for SMPL-T and object

We use SmoothNet [17] to smooth our SMPL-T and SIF-
Net object pose predictions. We use exactly the same model
and training strategy proposed by the original paper. The
input to the SMPL-T SmoothNet is our estimated SMPL-T
pose and translation (relative to the first frame). The input
to the object SmoothNet is the object rotation (6D vector).
Following the standard practice of SmoothNet [17], we train
both models on the predictions from the BEHAVE [1] train-
ing set. Note that we do not fine-tune them on InterCap [3]
dataset. We evaluate this component in Sec. 2.3.

1.5. Visibility aware joint optimization

The objective function defined in Eq. 2 is highly non-
convex thus we solve this optimization problem in two
stages. We first optimize the SMPL pose and shape param-
eters using human data term only. We then optimize the ob-
ject parameters using the object and contact data terms. The
loss weights are set to: λreg = 2.5× 10−4, λah = 104, λh =
104, λp = t × 10−4, λo = 900, λocc = 9 × 10−4, λao =
225, λc = 900, where λc is the loss weight for the contact
data term defined in Eq. 5.

2. Additional ablation results
2.1. Further evaluation of SMPL-T conditioning

We show some example images from one sequence in
Fig. 2 to evaluate the importance of our SMPL-T condition-
ing. It can be seen that without this conditioning, the human
is reconstructed at fixed depth, leading to inconsistent rela-
tive translation across time. Our method predicts more co-
herent relative human translation and more accurate object
pose.

Figure 4: SMPL features 
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Figure 2. Evaluating SMPL-T conditioning for neural field predic-
tion. We can see that without conditioning on SMPL-T meshes,
the object pose prediction is worse and human is reconstructed at
fixed depth, leading to inconsistent relative location across frames.
Our method recovers the relative translation more faithfully and
obtain better object pose predictions.

To further evaluate SMPL-T conditioning, we compute
the object pose error from the raw network predictions and
compare it with the object pose of CHORE which is also
the raw prediction from the network. The pose error is
computed as Chamfer distance (CD) and vertex to vertex
(v2v) error after centring the prediction and GT mesh at ori-
gin. We also report the translation error (transl.) as the dis-
tance between predicted and GT translation. The results are
shown in Tab. 1. We can clearly see that our SMPL feature
improves both the raw object pose prediction and distance
fields (results after optimization are also improved).

Method
Raw prediction After opt. w=10

CD↓ v2v↓ transl.↓ SMPL↓ obj.↓
w/o SMPL-T 5.56 16.10 14.28 14.40 17.29
Ours 3.98 12.34 9.53 8.03 8.23

Table 1. Importance of SMPL-T conditioning (errors in cm).
We can see that our SMPL-T feature improves both the raw ob-
ject pose prediction and distance fields (after opt.). Without our
SMPL-T conditioning, the reconstructed translation is not consis-
tent across frames, leading to large errors after alignment of tem-
poral window of 10s (w=10).

2.2. Comparing different pose prediction methods

We show some example comparisons of different object
pose prediction methods under heavy occlusions in Fig. 4.
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Method Chamfer v2v Acceleration
w/o SmoothNet 8.71 9.84 1.38
w/ SmoothNet 8.01 9.12 1.18

Table 2. Ablate SMPL SmoothNet (errors in cm). We can see
that SmoothNet [17] improves the overall smoothness and slightly
reduces the pose errors.

Method Chamfer v2v Translation
a. Raw prediction 5.03 10.39 10.01
b. Raw + SmoothNet 4.22 8.60 10.16
c. Raw + our pose pred. 4.09 8.02 10.20
d. Our full model 3.62 7.20 9.96

Table 3. Ablate SmoothNet for object pose prediction (errors in
cm). We can see our pose prediction (c) is better than Smooth-
Net [17] (b). Combing both we obtain the best result (d).

We compare our method against: 1). Raw prediction from
our SIF-Net. 2). Linearly interpolate the occluded poses
from visible frames (SLERP). 3). CMIB [4], a transformer
based model trained to infill the object motion using visi-
ble frames. Note here the evaluation is based on the final
tracking results and we report the object errors only as the
difference of SMPL error is very small. Similar to Sec. 2.1,
the object errors are computed as Chamfer distance, v2v er-
ror and translation error.

It can be seen that the raw pose prediction is noisy due to
occlusion. SLERP and CMIB corrects some pose errors but
is not robust as they do not leverage the human information.
Our method is more accurate as it takes the human context
and object pose into account.

2.3. Evaluating SmoothNet

SmoothNet [17] is used to smooth the SMPL-T parame-
ters after 2D keypoint based optimization. We evaluate this
step by computing the SMPL errors, shown in Tab. 2. We
can see that SmoothNet reduces the SMPL error slightly.

We also use SmoothNet to smooth the object pose be-
fore sending it to our human and visibility aware object pose
prediction network. SmoothNet cannot correct errors under
long-term occlusions. However, it provides smoother ob-
ject motion for visible frames which can benefit our pose
prediction network. We evaluate this using object pose er-
rors and report the results in Tab. 3. It can be seen that our
method (Tab. 3c) works better than SmoothNet (Tab. 3b)
on raw predictions. Nevertheless, with smoothed pose after
SmoothNet, our method achieves the best result (Tab. 3 d).

2.4. Runtime cost

SMPL-T pre-fitting and joint optimization can be run in
batches hence the average runtime per frame is not long:
SMPL-T pre-fitting: 6.38s, SIF-Net object pose prediction:
0.89s, HVOP-Net: 1.3ms, joint optimization: 9.26s, total:
16.53s. Compared to CHORE (∼12s/frame) [12], the ad-
ditional cost is mainly from the SMPL-T pre-fitting. Yet,

SMPL-T conditioning allows faster convergence of joint
optimization and much better reconstruction. Since we use
efficient 2D encoder instead of 3D encoder, it takes only
1.05GB GPU memory to load the SIF-Net model. This al-
lows us to do joint optimization with batch size up to 128
on a GPU with 48GB memory.

3. Generalization to NTU-RGBD dataset

Obtaining input masks. Unlike BEHAVE and InterCap
where the human and object masks are provided by the
dataset, there are no masks in NTU-RGBD. To this end,
we run DetectronV2 [11] to obtain the human masks. We
manually segment the object in the first frame using inter-
active segmentation [8] (<1min/image) and then use video
segmentation [2] to propagate the masks. The overhead of
1min/video manual label is small.

We show more results from our method on NTU-RGBD
dataset [6] and compare against CHORE [12] in Fig. 5.
It can be seen that CHORE may predict some reason-
able object pose but it fails quite often to capture the
fine-grained contacts between the human and object. Our
method obtains more coherent reconstruction for different
subjects, human-backpack interactions, camera view points
and backgrounds. Please see our project website for com-
parison in full sequences.

4. Limitations and future works

Although our method works robustly under heavy occlu-
sions, there are still some limitations. Firstly, we assume
known object templates for tracking, an interesting direc-
tion is to build such a template from videos as demonstrated
by recent works [10,14–16]. Secondly, it would be interest-
ing to model multi-person or even multi-object interactions
which is a more realistic setting in real-life applications. In
addition, the backpack can also deform non-rigidly which
is not modelled in our method. Further works can incorpo-
rate the surface deformation [5] or object articulation [13]
into the human object interaction. We leave these for future
works.

We identify three typical failure cases of our method,
some examples are shown in Fig. 3. The first typical failure
case comes from heavy occlusion when the object under-
goes significant changes (object pose and contact locations)
between two visible frames. In this case, it is very difficult
to track the pose and contact changes accurately (Fig. 3 A).
Second typical failure is due to the difficulty of pose pre-
diction itself even the object is fully visible. In this case the
object pose is uncommon and the network failed to predict
it correctly (Fig. 3 B). Another failure is caused by symmet-
ric objects. Our optimization minimizes the 2D mask loss
and contact constraints but the network is confused by the
symmetry and the initial pose prediction is not semantically
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Supp: failure case 
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A. Significant object pose change between two visible frames. 
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Figure 3. Failure cases analysis. We show three typical fail-
ure cases of our method: A. The occluded object pose (T=156)
changes significantly between two visible frames (T=0 and
T=319) and it is difficult to accurate track the contact changes.
B. The object pose is not commonly seen during interaction and it
is difficult to predict for this rare pose. C. The object is symmetric.
The joint optimization satisfies the object mask and contacts but is
not semantically correct.

correct (Fig. 3 C). In addition, the training data for these ob-
jects is very limited (only 1/3 of other objects). More train-
ing data or explicitly reasoning about the symmetry [18] can
be helpful.
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Supp: compare pose prediction 
methods

Input
Raw pred. SLERP CMIB Ours

Camera view
Raw pred. SLERP CMIB Ours
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Figure 4. Comparing different object pose prediction method under heavy occlusions. Raw prediction is from our SIF-Net output, SLERP
denotes linear interpolation and CMIB is from [4]. We can see SLERP and CMIB can correct some errors (row 5) but they do not take the
human motion into account hence often fail in more challenging cases. Our method is more robust as it leverages information from both
human motion and object pose from visible frames.
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Supp: NTU‐RGBD 
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Figure 5. Comparing our method with CHORE [12] on NTU-RGBD [6] dataset. It can be seen that CHORE does not capture the realistic
contacts between the person and the backpack. Our method recovers the 3D human, the object and contacts more faithfully in different
interaction types, camera view points and backgrounds.
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