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This supplemental document contains four sections:
Section A shows implementation details of our CodeTalker;
Section B presents more discussions on the proposed
method; Section C presents details of the user study; and
Section D presents short descriptions of the supplemental
video.

A. Implementation Details

A.1. Hyper-parameters of Codebook

We have explored and discussed the important hyper-
parameters of our motion codebook in Section 4.5 “Code-
book construction” on the BIWI dataset in the main pa-
per. Here we provide more specific parameters adopted for
CodeTalker trained on the two datasets. For BIWI, we have
the ground truth for quantitative evaluation on the testing
set BIWI-Test-A to determine a group of parameters P = 1
and H = 8 for high-quality results (i.e., Section 4.5 “Code-
book construction” in the main paper). Additionally, we
set the codebook item number N = 256 and the dimen-
sion of items C = 128. Although more codebook items
and dimensions could ease reconstruction, the redundant el-
ements may cause ambiguity in speech-driven motion syn-
thesis. Hence, we did not heavily tune these parameters
and just empirically set them for good visual quality. For
VOCASET, since there is no ground truth for us to obtain
the quantitative results, we empirically select a group of pa-
rameters (i.e., N = 256, P = 1, H = 16, C = 64), which
could produce visually plausible facial animations in our
experiments.

A.2. Network Architecture

To improve the reproducibility of our CodeTalker, we
further illustrate the detailed network architectures for the
facial motion space learning and the speech-driven motion
synthesis (Section 3.1 and 3.2 in the main paper, respec-
tively), which are shown Table 1.
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Figure 1. Distance between lower and upper lip within a sampled
sequence from VOCA-Test of (a) reconstruction and (b) speech-
driven motion synthesis results produced by different variants.

B. More Discussions on CodeTalker

B.1. Instance Normalization in Self-reconstruction
Learning

Instance Normalization [8] (IN) has been widely used in
the filed of style transfer [3, 9], which is defined as:

IN(x) = γ(
x− µ(x)

σ(x)
) + β. (1)

Different from BN [4] layers, here µ(x) and σ(x) are com-
puted across temporal dimensions independently for each
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Table 1. Parameter illustration of network architectures. C(k,s,p,n) denotes a 1D Convolutional layer with kernel size k, stride size s,
padding size p, and output channels of n. Tenc(d1,d2,h,l) denotes a transformer encoder layer with basic channel number of d1, forward
channel number of d2, self-attention head number of h, and layer number l, while similarly, Tdec represents a transformer decoder layer.
L(n) denotes a linear layer with output channels of n. CA[·] stands for the additional cross-attention input for transformer decoders.
lCM = 12 for BIWI, while lCM = 6 for VOCASET. n · T stands for the interpolated audio feature length in order to align with visual
frames, where n = 2 for BIWI and n = 1 for VOCASET. ‘+’ denotes the channel-wise addition. “Drop” means the dropout operation.

Stage Module Input → Output Layer Operation

I

Encoder

M(T, V, 3) → M(T, V · 3) Reshape

M(T, V · 3) → Z1
e(T, 1024) L(1024) → LReLU → C(5,1,2,1024) → LReLU → IN

Z1
e(T, 1024) → Z2

e(T,H · C) L(1024) → Tenc(1024,1536,8,6) → L(H · C)

Z2
e(T,H · C) → Zq(T,H,C) Reshape → Quantize

Decoder

Zq(T,H,C) → Zq(T,H · C) Reshape

Zq(T,H · C) → Z1
d(T, 1024) L(1024) → C(5,1,2,1024) → LReLU → IN

Z1
d(T, 1024) → M̂(T, V · 3) L(1024) → Tenc(1024,1536,8,6) → L(V · 3)

II

A(T, d) → F1
e(T

′, 512)

C(10,5,0,512) → GN → GeLU → C(3,2,0,512) → GN → GeLU

→ C(3,2,0,512) → GN → GeLU → C(3,2,0,512) → GN → GeLU

Speech → C(3,2,0,512) → GN → GeLU → C(3,2,0,512) → GN → GeLU

Encoder → C(2,2,0,512) → GN → GeLU → C(2,2,0,512) → GN → GeLU

F1
e(T

′, 512) → F2
e(n · T, 768) Interpolate → LN → L(768) → Drop

F2
e(n · T, 768) → F3

e(n · T, 1024) Tenc(768,3072,12,12) → L(1024)

M̂past(T, V · 3) → Fpast
emb(T, 1024) L(1024) → +StyleVector

Fpast
emb(T, 1024) → Ẑ1

d(T, 1024) Tdec(1024,2048,4,lCM) with CA[F3
e] → L(H · C)

Cross-modal Ẑ1
d(T,H · C) → Ẑq(T,H,C) Reshape → Quantize

Decoder Ẑq(T,H,C) → Ẑq(T,H · C) Reshape

Ẑq(T,H · C) → Ẑ2
d(T, 1024) L(1024) → C(5,1,2,1024) → LReLU → IN

Ẑ2
d(T, 1024) → M̂(T, V · 3) L(1024) → Tenc(1024,1536,8,6) → L(V · 3)

Table 2. Ablation study on the Instance Normalization (IN) for
self-reconstruction learning. The performance is measured by the
reconstruction error on VOCA-Test and BIWI-Test-A.

Variants Reconstruction Error

VOCA-Test (×10−5 mm) BIWI-Test-A (×10−5 mm)
Ours (w/o IN) 0.12 3.27
Ours 0.08 2.83

channel within each sample:

µnc(x) =
1

T

T∑
t=1

xnct (2)

σnc(x) =

√√√√ 1

T

T∑
t=1

(xnct − µnc(x))2 + ϵ (3)

Interestingly, we empirically find that normalizing feature
statistics (i.e., mean and variance) with IN (not BN due

to small mini-batch size) can boost the performance of our
CodeTalker in self-reconstruction learning, as shown in Ta-
ble 2. In addition, it can also make self-reconstruction train-
ing more stable. To better show the gain of normalization,
we also visualize the lip distance of a sampled sequence
of reconstruction results from VOCA-Test in Figure 1(a).
The visualization result indicates that the predicted lip am-
plitudes are closer to those of the ground truth by equip-
ping with IN, while the ablated variant (i.e., Ours (w/o IN))
cannot reconstruct lip movements with accurate amplitudes.
The speech-driven facial motion synthesis (stage two) can
also benefit from the facial motion codebook learned in self-
reconstruction with IN, as shown in Figure 1(b). Note that
we synthesize facial motions conditioned on a randomly
sampled speaking style. We conjecture that facial motions
with different magnitudes could be well encapsulated into
the discrete motion prior by normalizing temporal elements
within each channel. The rationality and effect of IN de-
serve further studies as our potential direction.
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Figure 2. Alternative data flow and supervision framework of our
cross-modal decoder. Note that we omit the style vector and audio
features input for simplicity. Given the past motion code as in-
put, the alternative cross-modal decoder first autoregressively pre-
dict motion code and then decode them into motions with the pre-
trained codebook and decoder.

B.2. Alternative Data Flow and Supervision

As we have summarized in Section 2.2 of the main paper,
recent works explore the power of discrete prior learning in
a large variety of tasks, among which most existing Vec-
tor Quantization (VQ)-based works [6,10] adopt categorical
cross-entropy (CE) loss to supervise their token predictions.
Hence, we also explore some alternative data flow and su-
pervision frameworks as our cross-modal decoder, which is
shown in Figure 2. It is worth noting that the style vector
and audio features are omitted for simplicity.

Different from our cross-modal decoder in the main pa-
per, the alternative takes past motion code as input and then
autoregressively predicts code sequences in form of n-way
classification. The predicted code sequence then retrieves
the respective code items from the learned codebook Z , and
further produces facial motion sequences through the fixed
decoder D. A CE loss is adopted to penalize error between
the predicted code sequence ĉ ∈ {0, . . . , |N | − 1}T ′·H and
the ground truth c generated by the pre-trained encoder E:

Lce =

T ′·H∑
i=0

−ci log(ĉi). (4)

We train the alternatives with the same settings as those in
the main paper (Section 3.3). The lip-sync evaluation result
is tabulated in Table 3. Alternative model with Lce alone
cannot converge well due to the difficult cross-modality
mapping of token prediction. While adding more con-
straints (i.e., Lreg and Lmotion in the main paper Eq. 6 can
ease the difficulty of token prediction learning, the per-
formance is still limited with this token prediction frame-
work. Overall, the lower average lip error achieved by our
CodeTalker suggests its framework superiority in terms of
the accuracy of lip movements.

C. User Study
The designed user study interface is shown in Figure 3.

A user study is expected to be completed with 5–10 min-
utes (24 video pairs × 5 seconds × 3 times watching).
To remove the impact of random selection, we filter out

Table 3. Comparison of lip-sync errors. We compare different
methods on BIWI-Test-A. Lower means better. λ is the weighting
factor.

Method Lip Vertex Error (×10−4 mm)
Alter. (Lce) 9.6356
Alter. (λLce+Lreg) 5.1138
Alter. (λLce+Lreg+Lmotion) 5.0254
CodeTalker (Ours) 4.7914

those comparison results completed in less than two min-
utes. For each participant, the user study interface shows
24 video pairs and the participant is instructed to judge the
videos twice with the following two questions, respectively:
“Comparing the lips of two faces, which one is more in sync
with the audio?” and “Comparing the two full faces, which
one looks more realistic?”.

D. Video Comparison
To better evaluate the qualitative results produced by

competitors [1, 2, 5, 7] and our CodeTalker, we provide
a supplemental video* for demonstration and comparison.
Specifically, we test our model using various audio clips,
including the audio clips extracted from TED and TEDx
videos, audio sequences from the VOCASET and BIWI
datasets, and the speech from supplementary videos of pre-
vious methods. The video shows that CodeTalker can syn-
thesize natural and plausible facial animations with well-
synchronized lip movements. It is worth noting that, com-
pared to the competitors (i.e., VOCA, MeshTalk and Face-
Former) suffering from the over-smoothing problem, our
CodeTalker can produce more vivid and realistic facial mo-
tions and better lip sync. Besides, we also show the talking
style interpolation results and facial animations of talking
in different languages.
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