
Supplementary Material for SVFormer: Semi-supervised
Video Transformer for Action Recognition

This supplementary Appendix contains the following.

• Section A: The efficiency comparison between our SV-
Former with previous methods.

• Section B: The comparison of different spatial-
temporal attention mechanisms at SSL settings.

• Section C: Additional experiments supported for our
methods.

• Section D: More visualizations of different mixing
methods.

A. Efficiency Comparison

In this section, we compare the efficiency of SVFormer
with previous state-of-the-art methods [3, 4] in Table 1. We
present the Input modals, Input Frames, Training Epochs,
Model Parameters and Floating point operations (Flops)
here to show the efficiency of SVFormer. Note that we use
the inference Flops for a single view here.

We can observe that both variants of our methods (i.e.,
SVFormer-S and SVFormer-B) require only single RGB
modal with 8 frames as input. Besides, our methods only
need 30 training epochs, which alleviates the training cost
significantly compared to previous methods [3, 4] requir-
ing 200 or 600 training epochs. In particular, SVFormer-S
outperforms the state-of-the-art [4] with the fewest model
parameters and Flops. Though SVFormer-B requires more
model parameters and Flops, the performances are im-
proved significantly.

B. Attention Mechanisms

In this section, we compare three different attention
mechanisms in TimeSformer [1] at semi-supervised settings
in Table 2. Space-only refers to perform self-attention only
in each individual frame, and average predictions for every
frame. Joint Space-Time treats each token equally and per-
forms global attention on each token which increasing the
computation cost. Divided Space-Time is the default set-
ting in our SVFormer, where temporal attention and spatial
attention are separately applied one after the other.

We can observe that Space-only attention performs sat-
isfactory results at 1% labeling ratio. This is mainly caused
since the model may not be able to learn the temporal atten-
tion when the labels are extremely scarcity. However, when
there are more labeled samples (10% labeling ratio), Di-
vided Space-Time attention achieve the best superiority. We
believe that the labeled samples are enough for the model to
learn the temporal dynamic information in this case. For
the consideration of accuracy and efficiency, we thus set
Divided Space-Time attention as default, same as in TimeS-
former [1].

C. Additional Experiments
In this section, we demonstrate additional experiments

and ablation studies to support for our methods. First,
it would be interesting to show the effectiveness of our
method in more data regime such as 50% labeling ratio and
even supervised(i.e.,100% labeling ratio) setting. Note in
100% case, the loss Lun and Lmix are applied to all data.
The results in Table 3 indicate SVFormer can still improve
the supervised baseline with more labeled data.

Besides, following MvPL [3], we warm up the training
with only labeled data in the first few epochs, which ensures
a stable start. As shown in Figure 1, though EMA performs
lower in the beginning, it achieves higher results and is more
stable in the end.

To investigate the effectiveness of different pretrain data,
we do ablation study on UCF-101 datasets with different
pretrain methods in Table 4. It can be clearly seen that
the pre-training of ImageNet is crucial to performance. At
the same time, if large-scale Kinetics-400 is used for pre-
training, it will also greatly help improve the performance
of low-labeled datasets.

D. More Visualizations
In this section, we present more visualization of the dif-

ferent mixing methods in Fig 2. We show the examples
of Tube TokenMix strategy with three pixel-level mixing
methods, CutMix [5], Mixup [6], PixMix [2], as well as the
other two token-level mixing methods, i.e., Frame Token-
Mix and Rand TokenMix.



Table 1. Comparison of efficiency. We show the efficiency comparison of our SVFormer and previous state-of-the-art methods. The
results are reported on Kinetics-400 and UCF-101 with 1% labeling ratio.

Method Backbone Input Frames Epochs Params (M) Flops (G) Infer. View UCF-1% Kinetics-1%

MvPL [3] 3D-R50 V+F+G 8 600 32.5 54.5 10× 3 22.8 17.0
CMPL [4] R50+R50-1/4 V 8+16 200 34.6 54.5 10× 3 25.1 17.6

SVFormer-S ViT-S V 8 30 30.7 50.8 5× 3 31.4 32.6
SVFormer-B ViT-B V 8 30 121.4 196.6 5× 3 46.3 49.1

Table 2. Comparison of different attention mechanisms. The
results are reported on Kinetics-400 and UCF-101 with 1% and
10% labeling ratios at SVFormer-S.

Attention
Mechisams Flops (G) UCF-101 Kinetics-400

1% 10% 1% 10%

Space-only 38.6 30.5 77.6 31.1 58.6
Divided Space-Time 50.8 31.4 79.1 32.6 61.6

Joint Space-Time 58.5 28.4 78.5 27.3 60.9

Table 3. Comparison of more labeled data. The results are re-
ported on UCF101 and HMDB51 with 50% and 100% labeling
ratios. We show the Top-1 accuracy here.

UCF-50% UCF-100% HMDB-50% HMDB-100%

Supervised 78.4 85.2 53.7 60.8
SVFormer-S 82.3 86.4 58.2 61.6

Table 4. Comparison of different pretrain data. The results
are reported on UCF-101 with 1% and 10% labeling ratios at
SVFormer-S.

pretrain UCF-1% UCF-10%

Supervised - 5.3 27.5
Supervised ImageNet 12.7 62.5

SVFormer-S ImageNet 31.4 79.1
SVFormer-S Kinetics-400 35.6 84.5
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Figure 1. Training accuracy curves with or w/o EMA on UCF-1%.
We show the Top-1 accuracy at SVFormer-S here.
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Figure 2. Example of the traditional pixel-level mixing methods and our proposed token-level mixing.


