
Appendix
A. Reproducibility & Ethics Statements

Reproducibility We have specified the setup for all experiments in the paper including hyperparameters, presented the
algorithm in detail, and will provided the source code to make sure that our results are reproducible.

Ethics Our work is related to federated learning and one of FL’s goals is to preserve user’s privacy. Considering this
ethically sensitive topic, we have shown that differential privacy of our method FedDM can be guaranteed with Gaussian
mechanism. On the other hand, potential negative impacts to users like data leakage must be taken into account carefully and
cautiously if such differentially private algorithms are deployed in real-world sensitive applications. Whereas, it should be
noted that our work do not directly leverage real-world sensitive data, and all experiments are conducted on synthetic data,
MNIST, CIFAR10 or CIFAR100, all of which are standard non-private datasets.

B. Synthetic Binary Classification

We design a synthetic 1-D binary classification problem to better illustrate the advantage of learning a surrogate function
for the training objective. Specifically, we construct a dataset Ds = {(xi, yi)|i = 1, . . . , n} with n = 100 synthetic pairs in
the following way:

xi ∼ N (0, 1), yi =

{
1 (xi ≥ 0 and pi ≥ 0.9) or (xi < 0 and pi < 0.1)

0 otherwise
, (16)

where pi is a random value sampled from Uniform(0, 1). A prediction is made by ŷi = Sigmoid(wxi) with the weight w as
the trainable parameter. We use the binary cross entropy as the training objective:

LBCE = − 1

n

n∑
i=1

yi log(ŷi) + (1− yi) log((1− ŷi)). (17)

Then we use n′ = 20 randomly initialized examples {(x̃j , ỹj)|j = 1, . . . , 20} to match the objective around w = 0 as
introduced in Section 3.2. We plot the original objective, the surrogate function, and the tangent line at w = 0 obtained by
the gradient in Figure 1.

C. Message size of different FL methods

In this section, we provide specific message size under different data partitioning of FedDM. As discussed previously, the
message size of all baseline methods are determined on the model size, while the message size varies from different scenarios
and ipc values. When there are 10 clients, we set ipc=10 for MNIST and CIFAR10, and ipc=5 for CIFAR100. We present the
results in Table 5. It can be observed that FedDM are more advantageous for unbalanced data partitioning, such as Dir10(0.1)
and Dir10(0.01). For the experiment of Dir50(0.5) on CIFAR10 with ConvNet, the message sizes of FedDM and baselines
are 3.1 × 106 and 1.6 × 107 respectively, where our method saves about 80% costs per round. Moreover, if the underlying
model are changed to ResNet-18 for Dir10(0.5), then the number of parameters is about 1.1× 108.

Table 5. The size of message uploaded to the server (number of float parameters).

MNIST CIFAR10 CIFAR100

Dir10(0.5) 635040 2672640 10045440
Dir10(0.1) 368480 1351680 4761600

Dir10(0.01) 109760 460800 2135040
Baseline 3177060 3200100 5044200



D. Proof of Theorem 3.2

According to Theorem 3.1, using DP-SGD to train a neural network can protect differential privacy. Back to FedDM, we
first look at each client separately to investigate its differential privacy. We show that the gradient of Lc in equation 8 can be
written as the average of individual gradients for each real example,

∇Sk
Lc =

1

|BDk
c |

∑
(xi,yi)∈B

Dk
c

g̃(xi), (18)

where g̃(xi) is the modified gradient for xi. Recall the equation of Lc, we have

Lc =

Lc,h︷ ︸︸ ︷
∥ 1

|BDk
c |
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.
(19)

Lc are divided into two similar parts, Lc,h and Lc,z . Then we take a look at the gradient of Lc,h with respect to Sk below:

∇Sk
Lc,h =

JSk︷ ︸︸ ︷
2(

∂ 1

|BSk
c |

∑
(x̃,ỹ)∈B
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(20)

Similarly, we have

∇Sk
Lc,z =

1

|BDk
c |

∑
(x,y)∈B

Dk
c

z̃w(x). (21)

Then the final gradient of Lc is

∇Sk
Lc = ∇Sk

Lc,h +∇Sk
Lc,z =
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It indicates that the synthetic set can be regarded as an equivalence to the network parameter in DP-SGD, and leads to
the conclusion that for each client k, Theorem 3.1 holds during optimizing Sk. Furthermore, since the synthetic dataset is
initialized from random noise, it would not leak privacy at the beginning of the optimization.

Next, to extend DP guarantee to a system with K clients, we use parallel composition [34]:

Theorem D.1 (Parallel Composition [34]). If there are K mechanisms M1, . . . ,MK computed on disjoint subsets
whose privacy guarantees are (ϵ1, δ1), . . . , (ϵK , δK) respectively, then any function of M1, . . . ,MK is (maxi ϵi,maxi δi)-
differential private.



We can see that different clients maintain their own local datasets, which satisfies disjoint property. Then this Gaussian
mechanism is still (ϵ, δ)-differentially private for the whole system if each client satisfies (ϵ, δ)-differential privacy. In
addition, to quantify how much noise is required for each client, we can make use of the Tail bound in [1]:

δ = min
λ

exp(αM (λ)− λϵ). (23)

Based on [1], αM (λ) ≤ Tq2λ2/σ2, without loss of generality, set λ = σ2, it holds that δ ≤ exp(Tq2σ2 − ϵσ2), and

σ ≥
√

log(δ)
Tq2−ϵ . When Tq2 ≤ ϵ/2, we have σ ≥

√
2 log(1/σ)

ϵ .

To guarantee differential privacy when leveraging the synthetic dataset for downstream tasks, we introduce the property
of post-processing below:

Lemma D.1 (Robustness to post-processing [15]). LetM : D → R be a randomized mechanism that is (ϵ, δ)-differentially
private. If F : R → R′ be an arbitrary deterministic or randomized mapping, F(M) is also (ϵ, δ)-differentially private.

Training a network on the synthetic dataset S is a post-processing operation, and Lemma D.1 ensures that any post-
processing computation on S is differentially private as long as the generation of S satisfies (ϵ, δ)-differential privacy. This
property has also been deployed in similar applications such as [52], where the synthetic text generated from a DP-trained
language model was used in various downstream tasks and still preserved privacy.

Finally, with Theorem 3.1, Theorem D.1 and Lemma D.1, we complete the proof of Theorem 3.2.
For the total DP budget of R rounds, suppose in one round, the Gaussian mechanism can guarantee (ϵ, δ)-DP. Querying for

R rounds leads to (O(
√
R log(1/δ′)) · ϵ), Rδ + δ′)-DP guarantee ∀δ′ ∈ (0, 1/2), based on the advanced composition [21],

which guarantees a moderate privacy budget increase for R rounds.

E. FedDM with DP-SGD

Algorithm 2 FedDM: Federated Learning with Iterative Distribution Matching

1: Input: Training set D, set of synthetic samples S, deep neural network parameterized with w, probability distribution
over parameters Pw, Gaussian noise level σ, gradient norm bound C, training iterations of distribution matching T ,
learning rate ηc and ηs.

2: Server executes:
3: for each round r = 1, . . . , R do
4: for client k = 1, . . . ,K do
5: Sk ← ClientUpdate(k,wr, σ)
6: Transmit Sk to the server
7: end for
8: Aggregate synthesized data from each client and build the surrogate function by Equation 9
9: Update weights to wr+1 on S by SGD with the learning rate ηs

10: end for
11: ClientUpdate(k,wr, σ):
12: Initialize Sk with random noise.
13: for t = 0, · · · , T − 1 do
14: Sample w ∼ Pw(wr)
15: Sample mini-batch pairs BDk

c ∼ Dk and BSk
c ∼ Sk for each class c

16: Compute Lc based on Equation 8, L ←
∑C−1

c=0 Lc

17: Obtain the clipped gradient: ∇Sk
Lc ← ∇Sk

Lc/max
(
1,

∥∇Sk
Lc∥2

C

)
18: Add Gaussian noise: ∇Sk

Lc ← ∇Sk
Lc +

1

|BDk
c |
N (0, σ2C2I)

19: Update Sk ← Sk − ηc∇Sk
L

20: end for



F. Additional Experimental Results
F.1. Learning curves of FL methods

We show a complete set of learning curves for all of our experiments.

Increasing the number of communication rounds to 40. Even though we focus on the limited budget of 20 communi-
cation rounds in the main paper, we conduct an experiment to evaluate the performance of all considered methods with 40
rounds. In Figure 6, it can be observed that FedDM still outperforms other model averaging based methods in terms of final
test accuracy and convergence rate especially under unbalanced distribution, showing the effectiveness of our method.
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(a) Dir10(0.5)

0 10 20 30 40
Communication Round

10

20

30

40

50

60

70

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR10

FedAvg
FedProx
FedNova
SCAFFOLD
FedDM

(b) Dir10(0.1)
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(c) Dir10(0.01)

Figure 6. Test accuracy of different methods with 40 communication rounds on CIFAR10.

Different data partitioning. Here we present curves for different data partitioning. We observe that FedDM still outper-
forms all other baselines under scenarios of Dir10(50) in Figure 10 which is almost an i.i.d. data partitioning, and Dir50(0.5)
in Figure 11 which has more clients.
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(a) MNIST; rounds
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(b) CIFAR10; rounds

0 5 10 15 20
Communication Round

5

10

15

20

25

30

35

40

Te
st

 A
cc

ur
ac

y 
(%

)

CIFAR100

FedAvg
FedProx
FedNova
SCAFFOLD
FedDM

(c) CIFAR100; rounds
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(d) MNIST; message size
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(e) CIFAR10; message size
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(f) CIFAR100; message size

Figure 7. Test accuracy under Dir10(0.5).



• Dir10(0.1)
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(a) MNIST; rounds
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(b) CIFAR10; rounds
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(c) CIFAR100; rounds
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(d) MNIST; message size
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(e) CIFAR10; message size
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(f) CIFAR100; message size

Figure 8. Test accuracy under Dir10(0.1).

• Dir10(0.01)
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(a) MNIST; rounds
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(b) CIFAR10; rounds
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(c) CIFAR100; rounds
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(d) MNIST; message size
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(e) CIFAR10; message size
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(f) CIFAR100; message size

Figure 9. Test accuracy under Dir10(0.01).



• i.i.d., Dir10(50)
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(a) CIFAR10; rounds
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(b) CIFAR10; message size

Figure 10. Test accuracy under Dir10(50).

• Dir50(0.5)
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(a) CIFAR10; rounds
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(b) CIFAR10; message size

Figure 11. Test accuracy under Dir50(0.5).

Comparison with stronger baselines and a realistic dataset. We include two stronger baselines, FedAvgM and FedAdam,
and evaluate their performance on CIFAR10 under the default setting Dir10(0.5). As shownin Figure 12a, FedDM still
outperforms selected methods. In addition, we conduct an experiment on a realistic dataset, CelebA (2 classes) with a pre-
trained ViT-small model. 10% of 9343 clients are used and 10 of them are sampled each round. With the batch size of 5 and
the local epoch of 1 suggested by LEAF [4], we only tune learning rates. We set ipc=2, T=50 in FedDM. Performance of
R=100 rounds is shown in Figure 12b, where FedDM can reach a satisfactory accuracy with fewer rounds. The message size
of FedDM per client is 6.0× 105, significantly smaller than other methods whose size is 2.1× 107.
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(a) CIFAR10 with stronger baselines
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Figure 12. Comparison with stronger baselines and a realistic dataset.



Different noise levels. Figure 13 displays learning curves of different σ.
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(a) Small noise (σ = 1).
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(b) Medium noise (σ = 3).
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(c) Large noise (σ = 5).
Figure 13. Performance of FL methods with different levels of noise.

Effects of ipc. We show test accuracy curves to analyze effects of ipc in Figure 14.
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(a) CIFAR10; rounds
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(b) CIFAR10; message size
Figure 14. Performance of FedDM with different values of ipc.

Performance on ResNet-18. Learning curves of test accuracy along with rounds and message size are shown in Figure 15.
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(a) ResNet-18; rounds
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(b) ResNet-18; message size
Figure 15. Performance of FL methods on ResNet-18.

Transmitting real data. We present a comparison with sending real images (REAL) in Figure 16.
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Figure 16. Test accuracy of FedDM and REAL.



F.2. Visualization of the synthetic dataset

By randomly picking a client under data partitioning of Dir10(0.5), we provide the visualization of our synthetic dataset
under different noise levels in Figure 17, 18, 19, and 20 when S is initialized from random Gaussian noise N (0, 1). It can
be observed that even when there is no noise added to the gradient during optimization of the synthetic dataset, those images
are still illegible from their original classes in Figure 17. Furthermore, as σ increases, synthesized data become harder to
recognize, which protects the client’s privacy successfully.

Figure 17. Synthesized images when no noise is added.

Figure 18. Synthesized images with σ = 1



Figure 19. Synthesized images with σ = 3.

Figure 20. Synthesized images with σ = 5.


